ACADEMIC REGULATIONS & COURSE STRUCTURE

For

lates SSP, DIP, CE&SP AND IP

(Applicable for batches admitted from 2016-2017)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

www.universityupdates.in // www.android.universityupdates.in // www.ios.universityupdates.in

I Semester

S. No.	Name of the Subject	L	Р	С
1	Coding Theory and Applications	4	-	3
2	Transform Techniques	4	-	3
3	Advanced Digital Signal Processing	4	-	3
4	Digital Data Communications	4	-	3
5	Elective I 1. Statistical Signal Processing 2. Network Security and Cryptography 3. Pattern Recognition Principles	4	-	3
6	Elective II 1. Speech Processing 2. Soft Computing Techniques 3. Object Oriented Programming 4. Cyber Security	4	<u>x</u> -e	3
7	Signal Processing Laboratory		3	2
Total Credits				20

II Semester

	Total Credits			20		
II Semester						
S. No.	Name of the Subject	L	Р	С		
1	Adaptive Signal Processing	4	-	3		
2	Image & Video Processing	4	-	3		
3	Detection and Estimation Theory	4	-	3		
4	DSP Processors and Architectures	4	-	3		
5	Elective III 1. Computer Vision 2. Embedded System Design 3. Bio-Medical Signal Processing	4	-	3		
6	Elective IV 1. Internet Protocols 2. Radar Signal Processing 3. Wireless Communications & Networks	4	_	3		
7	Advanced Signal Processing Laboratory	-	3	2		
Total Credits						

III Semester

S. No.	Subject	L	Р	Credits
1	Comprehensive Viva-Voce			2
2	Seminar – I			2
3	Project Work Part – I			16
Total Credits			20	

IV Semester

S. No.	Subject	L	Р	Credits	
1	Seminar – II			2	
2	Project Work Part - II			18	
	Total Credits		4	20	

I Voor I Somostor	L	Р	С
	4	0	3

CODING THEORY AND APPLICATIONS

UNIT –I:

Coding for Reliable Digital Transmission and Storage:

Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes:

Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT –II:

Cyclic Codes:

Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding ,Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT –III:

Convolutional Codes:

Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT -IV:

Burst – Error-Correcting Codes:

Decoding of Single-Burst error Correcting Cyclic codes, Single-Burst-Error-Correcting Cyclic codes, Burst-Error-Correcting Convolutional Codes, Bounds on Burst Error-Correcting Capability, Interleaved Cyclic and Convolutional Codes, Phased-Burst –Error-Correcting Cyclic and Convolutional codes.

UNIT -V:

BCH – Codes:

BCH code- Definition, Minimum distance and BCH Bounds, Decoding Procedure for BCH Codes- Syndrome Computation and Iterative Algorithms, Error Location Polynomials and Numbers for single and double error correction

www.universityupdates.in || www.android.universityupdates.in || www.ios.universityupdates.in

TEXT BOOKS:

- 1. Error Control Coding- Fundamentals and Applications –Shu Lin, Daniel J.Costello,Jr, Prentice Hall, Inc.
- 2. Error Correcting Coding Theory-Man Young Rhee- 1989, McGraw-Hill Publishing.

- 1. Digital Communications-Fundamental and Application Bernard Sklar, PE.
- 2. Digital Communications- John G. Proakis, 5th Ed., 2008, TMH.
- 3. Introduction to Error Control Codes-Salvatore Gravano-oxford
- 4. Error Correction Coding Mathematical Methods and Algorithms Todd K.Moon, 2006, Wiley India.
- 5. Information Theory, Coding and Cryptography Ranjan Bose, 2nd Ed, 2009, TMH.

I Voor I Somostor	L	Р	С
1 Year 1 Semester	4	0	3

TRANSFORM TECHNIQUES

UNIT -I:

Fourier Analysis:

Fourier series, Examples, Fourier Transform, Properties of Fourier Transform, Examples of Fourier transform, sampling theorem, Partial sum and Gibbs phenomenon, Fourier analysis of Discrete time Signals, Discrete Fourier Transform.

Time – Frequency Analysis: Window function, Short Time Fourier Transform, Discrete Short Time Fourier Transform, Continuous wavelet transform, Discrete wavelet transform, wavelet series, Interpretations of the Time-Frequency plot.

UNIT -II:

Transforms:

Walsh, Hadamard, Haar and Slant Transforms, DCT, DST, KLT, Singular value Decomposition – definition, properties and applications

UNIT -III:

Continuous Wavelet Transform (CWT):

Short comings of STFT, Need for wavelets, Wavelet Basis- Concept of Scale and its relation with frequency, Continuous time wavelet Transform Equation- Series Expansion using Wavelets- CWT- Tiling of time scale plane for CWT. Important Wavelets: Haar, Mexican Hat, Meyer, Shannon, Daubechies.

UNIT -IV:

Multi Rate Analysis and DWT:

Need for Scaling function – Multi Resolution Analysis, Two-Channel Filter Banks, Perfect Reconstruction Condition, Relationship between Filter Banks and Wavelet Basis, DWT, Structure of DWT Filter Banks, Daubechies Wavelet Function, Applications of DWT.

UNIT -V:

Wavelet Packets and Lifting: Wavelet Packet Transform, Wavelet packet algorithms, Thresholding-Hard thresholding, Soft thresholding, Multidimensional Wavelets, Bi-orthogonal basis- B-Splines, Lifting Scheme of Wavelet Generation, Multi Wavelets

TEXT BOOKS:

- 1. A Wavelet Tour of Signal Processing theory and applications -RaghuveerM.Rao and Ajit S. Bopardikar, Pearson Edu, Asia, New Delhi, 2003.
- 2. K.P.Soman and K.I Ramachandran, "Insight into Wavelets from theory to practice" PHI, Second edition,2008

REFERENCE BOOKS:

- 1. Fundamentals of Wavelets- Theory, Algorithms and Applications -Jaideva C Goswami, Andrew K Chan, John Wiley & Sons, Inc, Singapore, 1999.
- 2. JaidevaC.Goswami and Andrew K.Chan, "Fundamentals of Wavelets" Wiley publishers, 2006
- 3. A Wavelet Tour of Signal Processing-Stephen G. Mallat, Academic Press, 2 Ed
- 4. Digital Image Processing S.Jayaraman, S.Esakkirajan, T.Veera Kumar TMH,2009

University

I Voor I Somestor	L	Р	С
1 Year 1 Semester	4	0	3

ADVANCED DIGITAL SIGNAL PROCESSING

UNIT –I:

Review of DFT, FFT, IIR Filters and FIR Filters:

Multi Rate Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate Conversion, Filter design & Implementation for sampling rate conversion.

UNIT –II:

Applications of Multi Rate Signal Processing:

Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, Implementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Sub-band Coding of Speech Signals, Quadrature Mirror Filters, Trans-multiplexers, Over Sampling A/D and D/A Conversion.

UNIT -III:

Non-Parametric Methods of Power Spectral Estimation: Estimation of spectra from finite duration observation of signals, Non-parametric Methods: Bartlett, Welch & Blackman-Tukey methods, Comparison of all Non-Parametric methods

UNIT –IV:

Implementation of Digital Filters:

Introduction to filter structures (IIR & FIR), Frequency sampling structures of FIR, Lattice structures, Forward prediction error, Backward prediction error, Reflection coefficients for lattice realization, Implementation of lattice structures for IIR filters, Advantages of lattice structures.

UNIT –V:

Parametric Methods of Power Spectrum Estimation: Autocorrelation & Its Properties, Relation between auto correlation & model parameters, AR Models - Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation, Finite word length effect in IIR digital Filters – Finite word-length effects in FFT algorithms.

TEXT BOOKS:

- 1. Digital Signal Processing: Principles, Algorithms & Applications J.G.Proakis& D. G. Manolakis, 4th Ed., PHI.
- 2. Discrete Time Signal Processing Alan V Oppenheim & R. W Schaffer, PHI.
- 3. DSP A Practical Approach Emmanuel C. Ifeacher, Barrie. W. Jervis, 2 Ed., Pearson Education.

REFERENCE BOOKS:

- 1. Modern Spectral Estimation: Theory & Application S. M. Kay, 1988, PHI.
- 2. Multi Rate Systems and Filter Banks P.P.Vaidyanathan Pearson Education.
- 3. Digital Signal Processing S.Salivahanan, A.Vallavaraj, C.Gnanapriya, 2000, TMH
- 4. Digital Spectral Analysis Jr. Marple

www.universityupdates.in || www.android.universityupdates.in || www.ios.universityupdates.in

I Voor I Somostor	L	Р	С
I I cal I Semester	4	0	3

DIGITAL DATA COMMUNICATIONS

UNIT -I:

Digital Modulation Schemes:

BPSK, QPSK, 8PSK, 16PSK, 8QAM, 16QAM, DPSK – Methods, Band Width Efficiency, Carrier Recovery, Clock Recovery.

UNIT -II:

Basic Concepts of Data Communications, Interfaces and Modems:

Data Communication Networks, Protocols and Standards, UART, USB, Line Configuration, Topology, Transmission Modes, Digital Data Transmission, DTE-DCE interface, Categories of Networks – TCP/IP Protocol suite and Comparison with OSI model.

UNIT -III:

Error Correction: Types of Errors, Vertical Redundancy Check (VRC), LRC, CRC, Checksum, Error Correction using Hamming code

Data Link Control: Line Discipline, Flow Control, Error Control

Data Link Protocols: Asynchronous Protocols, Synchronous Protocols, Character Oriented Protocols, Bit-Oriented Protocol, Link Access Procedures.

UNIT -IV:

Multiplexing: Frequency Division Multiplexing (FDM), Time Division Multiplexing (TDM), Multiplexing Application, DSL.

Local Area Networks: Ethernet, Other Ether Networks, Token Bus, Token Ring, FDDI. Metropolitan Area Networks: IEEE 802.6, SMDS

Switching: Circuit Switching, Packet Switching, Message Switching.

Networking and Interfacing Devices: Repeaters, Bridges, Routers, Gateway, Other Devices.

UNIT -V:

Multiple Access Techniques:

Frequency- Division Multiple Access (FDMA), Time - Division Multiple Access (TDMA), Code - Division Multiple Access (CDMA), OFDM and OFDMA. Random Access, Aloha- Carrier Sense Multiple Access (CSMA)- Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), Controlled Access- Reservation- Polling- Token Passing, Channelization.

TEXT BOOKS:

- Data Communication and Computer Networking B. A.Forouzan, 2nd Ed., 2003, TMH.
 Advanced Electronic Communication Systems W. Tomasi, 5^{th E}d., 2008, PEI.

- 1. Data Communications and Computer Networks Prakash C. Gupta, 2006, PHI.
- 2. Data and Computer Communications William Stallings, 8th Ed., 2007, PHI.
- 3. Data Communication and Tele Processing Systems -T. Housely, 2nd Ed, 2008, BSP.
- 4. Data Communications and Computer Networks- Brijendra Singh, 2ndEd., 2005, PHI.

	L	Р	С
I Year I Semester	4	0	3

STATISTICAL SIGNAL PROCESSING

(ELECTIVE - I)

UNIT I

Signal models and characterization: Types and properties of statistical models for signals and how they relate to signal processing,Common second-order methods of characterizing signals including autocorrelation,partial correlation, cross-correlation, power spectral density and cross-power spectral density.

UNIT II

Spectral estimation: Nonparametric methods for estimation of power spectral density, autocorreleation, cross-correlation, transfer functions, and coherence form finite signal samples.

UNIT III

Review of signal processing: A review on random processes, Areview on filtering random processes, Examples.

Statistical parameter estimation: Maximum likehood estimation, maximum a posterior stimation, Cramer-Rao bound.

UNIT IV

Eigen structure based requency estimation: Pisarenko, MUSIC, ESPRIT their application sensor array direction finding.

Spectrum estimation: Moving average (MA), Auto Regressive (AR), Auto Regressive Moving Average (ARMA), Various non-parametirc approaches.

UNIT V

Wiener filtering: The finite impulse case, causal and non-causal infinite impulse responses cases, Least mean squares adaptation, recursive least squares adaptation, Kalman filtering.

Text books:

- 1. Steven M.Kay, fundamentals of statistical signal processing: estimation Theory, Pretice-Hall, 1993.
- 2. Monsoon H. Hayes, Stastical digital signal processing and modeling, USA, Wiley, 1996.

Reference books:

2. DimitrisG.Manolakis, Vinay K. Ingle, and Stephen M. Kogon, Statistical and adaptive signal processing, Artech House, Inc,2005, ISBN 1580536107

	L	Р	С
I Year I Semester	4	0	3

NETWORK SECURITY AND CRYPTOGRAPHY (ELECTIVE -I)

UNIT -I:

Introduction:

Attacks, Services and Mechanisms, Security attacks, Security services, A Model for Internetwork security.Classical Techniques:Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques:

Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Differential and Linear Cryptanalysis, Block Cipher Design Principles and Modes of operations.

UNIT -II:

Encryption Algorithms:

Triple DES, International Data Encryption algorithm, Blowfish, RC5, CAST-128, RC2, Characteristics of Advanced Symmetric block cifers.**Conventional Encryption :**Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT -III:

Public Key Cryptography:Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.**Number Theory:**Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT -IV:

Message Authentication and Hash Functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs. Hash and Mac Algorithms

MD File, Message digest Algorithm, Secure Hash Algorithm, RIPEMD-160, HMAC.Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications :Kerberos, X.509 directory Authentication service.Electronic Mail Security: Pretty Good Privacy, S/MIME.

UNIT –V:

IP Security:

Overview, Architecture, Authentication, Encapsulating Security Payload, Combining security Associations, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms

Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

www.universityupdates.in || www.android.universityupdates.in || www.ios.universityupdates.in

TEXT BOOKS:

- 1. Cryptography and Network Security: Principles and Practice William Stallings, Pearson Education.
- 2. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.

- 1. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 2. Network Security Private Communication in a Public World by Charlie Kaufman, Radia Perlman and Mike Speciner, Pearson/PHI.
- 3. Principles of Information Security, Whitman, Thomson.
- 4. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH
- 5. Introduction to Cryptography, Buchmann, Springer.

www.universityupdates.in || www.android.universityupdates.in || www.ios.universityupdates.in

I Year I Semester	L	Р	C
	4	U	3

PATTERN RECOGNITION PRINCIPLES (ELECTIVE - I)

UNIT I : Introduction:

Fundamental problems in pattern Recognition system design, Design concepts and methodologies, Simple pattern recognition model.

Decisions and Distance Functions:

Linear and generalized decision functions, Pattern space and weight space, Geometrical properties, implementations of decision functions, Minimum-distance pattern classifications.

Probability - Probability of events:

Random variables, Joint distributions and densities, Movements of random variables, Estimation of parameter from samples.

UNIT - II: Decision making - Baye's theorem, Multiple features, Conditionally independent features, Decision boundaries, Unequal cost of error, estimation of error rates, the leaving-one-out-techniques, characteristic curves, estimating the composition of populations. Baye's classifier for normal patterns.

Non Parametric Decision Making:

histogram, kernel and window estimation, nearest neighbour classification techniques. Adaptive decision boundaries, adaptive discriminant functions, Minimum squared error discriminant functions, choosing a decision making techniques.

UNIT III: Clustering and Partitioning:

Hierarchical Clustering: Introduction, agglomerative clustering algorithm, the single-linkage, complete-linkage and average-linkage algorithm. Ward's method Partition clustering-Forg's algorithm, K-means's algorithm, Isodata algorithm.

UNIT IV: Pattern Preprocessing and Feature selection:

distance measures, clustering transformation and feature ordering, clustering in feature selection through entropy minimization, features selection through orthogonal expansion, binary feature selection.

UNIT V: Syntactic Pattern Recognition and Application of Pattern Recognition:

Concepts from formal language theory, formulation of syntactic pattern recognition problem, syntactic pattern description, recognition grammars, automata as pattern recognizers, Application of pattern recognition techniques in bio-metric, facial recognition, IRIS scon, Finger prints, etc.,

Reference books:

- 1. Pattern recognition and Image Analysis, Gose. JohnsonbaughJost, PHI.
- 2. Pattern Recognition Principle, Tou. Rafael. Gonzalez, Pea.
- 3. Pattern Classification, Richard duda, Hart., David Strok, Wiley.

University

I Year I Semester

L	Р	С
4	0	3

SPEECH PROCESSING (ELECTIVE – II)

UNIT –I:

Fundamentals of Digital Speech Processing:

Anatomy & Physiology of Speech Organs, The process of Speech Production, Acoustic Phonetics, Articulatory Phonetics, The Acoustic Theory of Speech Production- Uniform lossless tube model, effect of losses in vocal tract, effect of radiation at lips, Digital models for speech signals.

UNIT –II:

Time Domain Models for Speech Processing:

Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate, Speech Vs Silence discrimination using energy and zero crossing, Pitch period estimation using a parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT –III:

Linear Predictive Coding (LPC) Analysis:

Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky Decomposition Solution for Covariance Method, Durbin's Recursive Solution for the Autocorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT –IV:

Homomorphic Speech Processing:

Introduction, Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, The Complex Cepstrum of Speech, Pitch Detection, Formant Estimation, The HomomorphicVocoder.

Speech Enhancement:

Nature of interfering sounds, Speech enhancement techniques: Single Microphone Approach : spectral subtraction, Enhancement by re-synthesis, Comb filter, Wiener filter, Multi microphone Approach.

UNIT-V:

Automatic Speech & Speaker Recognition:

Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System

Hidden Markov Model (HMM) for Speech:

Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS,

www.universityupdates.in || www.android.universityupdates.in || www.ios.universityupdates.in

Speaker Recognition:

Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

TEXT BOOKS:

- 1. Digital Processing of Speech Signals L.R. Rabiner and S. W. Schafer. Pearson Education.
- 2. Speech Communications: Human & Machine Douglas O'Shaughnessy, 2nd Ed., Wiley India, 2000.
- 3. Digital Processing of Speech Signals. L.R Rabinar and R W Jhaung, 1978, Pearson Education.

- 1. Discrete Time Speech Signal Processing: Principles and Practice Thomas F. Quateri, 1st Ed., PE.
- 2. Speech & Audio Signal Processing- Ben Gold & Nelson Morgan, 1st Ed., Wiley.

I Year I Semester

L	Р	С
4	0	3

SOFT COMPUTING TECHNIQUES

(ELECTIVE -II)

UNIT –I:

Introduction:

Approaches to intelligent control, Architecture for intelligent control, Symbolic reasoning system, Rule-based systems, the AI approach, Knowledge representation - Expert systems.

UNIT –II:

Artificial Neural Networks:

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron, Learning and Training the neural network, Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations, Hopfield network, Self-organizing network and Recurrent network, Neural Network based controller.

UNIT –III:

Fuzzy Logic System:

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning, Introduction to fuzzy logic modeling and control, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, Fuzzy modeling and control schemes for nonlinear systems, Self-organizing fuzzy logic control, Fuzzy logic control for nonlinear time delay system.

UNIT -IV:

Genetic Algorithm:

Basic concept of Genetic algorithm and detail algorithmic steps, Adjustment of free parameters, Solution of typical control problems using genetic algorithm, Concept on some other search techniques like Tabu search and anD-colony search techniques for solving optimization problems.

UNIT –V:

Applications:

GA application to power system optimisation problem, Case studies: Identification and control of linear and nonlinear dynamic systems using MATLAB-Neural Network toolbox, Stability analysis of Neural-Network interconnection systems, Implementation of fuzzy logic controller using MATLAB fuzzy-logic toolbox, Stability analysis of fuzzy control systems.

TEXT BOOKS:

- 1. Introduction to Artificial Neural Systems Jacek.M.Zurada, Jaico Publishing House, 1999.
- 2. Neural Networks and Fuzzy Systems Kosko, B., Prentice-Hall of India Pvt. Ltd., 1994.

- 1. Fuzzy Sets, Uncertainty and Information Klir G.J. &Folger T.A., Prentice-Hall of India Pvt. Ltd., 1993.
- 2. Fuzzy Set Theory and Its Applications Zimmerman H.J. Kluwer Academic Publishers, 1994.
- 3. Introduction to Fuzzy Control Driankov, Hellendroon, Narosa Publishers.
- 4. Artificial Neural Networks Dr. B. Yagananarayana, 1999, PHI, New Delhi.
- 5. Elements of Artificial Neural Networks KishanMehrotra, Chelkuri K. Mohan, Sanjay Ranka, Penram International.
- 6. Artificial Neural Network –Simon Haykin, 2nd Ed., Pearson Education.
- 7. Introduction Neural Networks Using MATLAB 6.0 S.N. Shivanandam, S. Sumati, S. N. Deepa, 1/e, TMH, New Delhi.

	L	Р	С
I Year I Semester	4	0	3

OBJECT ORIENTED PROGRAMMING (ELECTIVE - II)

Objective: Implementing programs for user interface and application development using core java principles

UNIT I:

Objective: Focus on object oriented concepts and java program structure and its installation

Introduction to OOP

Introduction, Need of Object Oriented Programming, Principles of Object Oriented Languages, Procedural languages Vs OOP, Applications of OOP, History of JAVA, Java Virtual Machine, Java Features, Installation of JDK1.6

UNIT II:

Objective: Comprehension of java programming constructs, control structures in Java

Programming Constructs

Variables, Primitive Datatypes, Identifiers- Naming Coventions, Keywords, Literals, Operators-Binary, Unary and ternary, Expressions, Precedence rules and Associativity, Primitive Type Conversion and Casting, Flow of control-Branching, Conditional, loops.,

Classes and Objects- classes, Objects, Creating Objects, Methods, constructors-Constructor overloading, Garbage collector, Class variable and Methods-Static keyword, this keyword, Arrays, Command line arguments

UNIT III:

Objective: Implementing Object oriented constructs such as various class hierarchies, interfaces and exception handling

Inheritance: Types of Inheritance, Deriving classes using extends keyword, Method overloading, super keyword, final keyword, Abstract class

Interfaces, Packages and Enumeration: Interface-Extending interface, Interface Vs Abstract classes, Packages-Creating packages, using Packages, Access protection, java.lang package

Exceptions & Assertions - Introduction, Exception handling techniques-try...catch, throw, throws, finally block, user defined exception, Assertions

UNIT IV:

Objective: Understanding of Thread concepts and I/O in Java

MultiThreading : java.lang.Thread, The main Thread, Creation of new threads, Thread priority, Multithreading, Syncronization, suspending and Resuming threads, Communication between Threads

Input/Output: reading and writing data, java.io package

UNIT V:

Objective: Being able to build dynamic user interfaces using applets and Event handling in java

Applets- Applet class, Applet structure, An Example Applet Program, Applet Life Cycle, paint(),update() and repaint()

Event Handling -Introduction, Event Delegation Model, java.awt.event Description, Event Listeners, Adapter classes, Inner classes

UNIT VI:

Objective: Understanding of various components of Java AWT and Swing and writing code snippets using them

Abstract Window Toolkit

Why AWT?, java.awt package, Components and Containers, Button, Label, Checkbox, Radio buttons, List boxes, Choice boxes, Text field and Text area, container classes, Layouts, Menu, Scroll bar

Swing:

Introduction, JFrame, JApplet, JPanel, Components in swings, Layout Managers, JList and JScroll Pane, Split Pane, JTabbedPane, Dialog Box

Text Books:

- 1. The Complete Refernce Java, 8ed, Herbert Schildt, TMH
- 2. Programming in JAVA, Sachin Malhotra, Saurabhchoudhary, Oxford.
- 3. JAVA for Beginners, 4e, Joyce Farrell, Ankit R. Bhavsar, Cengage Learning.
- 4. Object oriented programming with JAVA, Essentials and Applications, Raj Kumar Bhuyya, Selvi, Chu TMH
- 5. Introduction to Java rogramming, 7thed, Y Daniel Liang, Pearson

Reference Books:

- 1. JAVA Programming, K.Rajkumar.Pearson
- 2. Core JAVA, Black Book, NageswaraRao, Wiley, Dream Tech
- 3. Core JAVA for Beginners, RashmiKanta Das, Vikas.
- 4. Object Oriented Programming through JAVA, P Radha Krishna, University Press.

I Year I Semester

L P C 4 0 3

Cyber Security (ELECTIVE - II)

I Year I Semester

L	Р	С
0	3	2

SIGNAL PROCESSING LAB

Note:

- G. Minimum of 10 Experiments have to be conducted
- H. All Experiments may be Simulated using MATLAB and to be verified theoretically.
- 1. Basic Operations on Signals, Generation of Various Signals and finding its FFT.
- 2. Program to verify Decimation and Interpolation of a given Sequences.
- 3. Program to Convert CD data into DVD data
- 4. Generation of Dual Tone Multiple Frequency (DTMF) Signals
- 5. Plot the Periodogram of a Noisy Signal and estimate PSD using Periodogram and Modified Periodogram methods
- 6. Estimation of Power Spectrum using Bartlett and Welch methods
- 7. Verification of Autocorrelation Theorem
- 8. Parametric methods (Yule-Walker and Burg) of Power Spectrum Estimation
- 9. Estimation of data series using Nth order Forward Predictor and comparing to the Original Signal
- 10. Design of LPC filter using Levinson-Durbin Algorithm
- 11. Computation of Reflection Coefficients using Schur Algorithm
- 12. To study Finite Length Effects using Simulink
- 13. Design and verification of Matched filter
- 14. Adaptive Noise Cancellation using Simulink
- 15. Design and Simulation of Notch Filter to remove 60Hz Hum/any unwanted frequency component of given Signal (Speech/ECG)

I Year II Semester

L P C 4 0 3

ADAPTIVE SIGNAL PROCESSING

UNIT –I:

Introduction to Adaptive Systems:

Adaptive Systems: Definitions, Characteristics, Applications, Example of an Adaptive System. The Adaptive Linear Combiner - Description, Weight Vectors, Desired Response Performance function - Gradient & Mean Square Error.

UNIT –II:

Development of Adaptive Filter Theory & Searching the Performance surface:

Introduction to Filtering - Smoothing and Prediction – Linear Optimum Filtering, Problem statement, Principle of Orthogonality - Minimum Mean Square Error, Wiener- Hopf equations, Error Performance - Minimum Mean Square Error.

Searching the performance surface – Methods & Ideas of Gradient Search methods - Gradient Searching Algorithm & its Solution - Stability & Rate of convergence - Learning Curves.

UNIT –III:

Steepest Descent Algorithms:

Gradient Search by Newton's Method, Method of Steepest Descent, Comparison of

Learning Curves.

UNIT –IV:

LMS Algorithm & Applications:

Overview - LMS Adaptation algorithms, Stability & Performance analysis of LMS Algorithms - LMS Gradient & Stochastic algorithms - Convergence of LMS algorithm.

Applications: Noise cancellation – Cancellation of Echoes in long distance telephone circuits, Adaptive Beam forming.

UNIT –V:

Kalman Filtering:

Introduction to RLS Algorithm, Statement of Kalman filtering problem, The Innovation Process, Estimation of State using the Innovation Process- Expression of Kalman Gain, Filtering Examples using Kalman filtering.

TEXT BOOKS:

- 1. Adaptive Signal Processing Bernard Widrow, Samuel D.Strearns, 2005, PE.
- 2. Adaptive Filter Theory Simon Haykin-, 4th Ed., 2002, PE Asia.

- Optimum signal processing: An introduction Sophocles.J.Orfamadis, 2nd Ed., 1988, McGraw-Hill, New York
- 2. Adaptive signal processing-Theory and Applications S.Thomas Alexander, 1986, Springer Verlag.
- 3. Signal analysis Candy, McGraw Hill Int. Student Edition
- 4. James V. Candy Signal Processing: A Modern Approach, McGraw-Hill, International Edition, 1988.

I Voor II Somootor	L	Р	С
1 1 ear 11 Semester	4	0	3

IMAGE AND VIDEO PROCESSING

UNIT –I:

Fundamentals of Image Processing and Image Transforms:

Introduction, Image sampling, Quantization, Resolution, Image file formats, Elements of image processing system, Applications of Digital image processing

Introduction, Need for transform, image transforms, Fourier transform, 2 D Discrete Fourier transform and its transforms, Importance of phase, Walsh transform, Hadamard transform, Haar transform, slant transform Discrete cosine transform, KL transform, singular value decomposition, Radon transform, comparison of different image transforms.

UNIT –II:

Image Enhancement:

Spatial domain methods: Histogram processing, Fundamentals of Spatial filtering, Smoothing spatial filters, Sharpening spatial filters.

Frequency domain methods: Basics of filtering in frequency domain, image smoothing, image sharpening, Selective filtering.

Image Restoration:

Introduction to Image restoration, Image degradation, Types of image blur, Classification of image restoration techniques, Image restoration model, Linear and Nonlinear image restoration techniques, Blind deconvolution

UNIT –III:

Image Segmentation:

Introduction to image segmentation, Point, Line and Edge Detection, Region based segmentation., Classification of segmentation techniques, Region approach to image segmentation, clustering techniques, Image segmentation based on thresholding, Edge based segmentation, Edge detection and linking, Hough transform, Active contour

Image Compression:

Introduction, Need for image compression, Redundancy in images, Classification of redundancy in images, image compression scheme, Classification of image compression schemes, Fundamentals of information theory, Run length coding, Shannon – Fano coding, Huffman coding, Arithmetic coding, Predictive coding, Transformed based compression, Image compression standard, Wavelet-based image compression, JPEG Standards.

UNIT -IV:

Basic Steps of Video Processing:

Analog Video, Digital Video. Time-Varying Image Formation models: Three-Dimensional Motion Models, Geometric Image Formation, Photometric Image Formation, Sampling of Video signals, Filtering operations.

www.universityupdates.in // www.android.universityupdates.in // www.ios.universityupdates.in

UNIT –V: 2-D Motion Estimation:

Optical flow, General Methodologies, Pixel Based Motion Estimation, Block- Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

TEXT BOOKS:

- 1. Digital Image Processing Gonzaleze and Woods, 3rd Ed., Pearson.
- Video Processing and Communication Yao Wang, JoemOstermann and Ya–quin Zhang. 1st Ed., PH Int.
- 3. S.Jayaraman, S.Esakkirajan and T.VeeraKumar, "Digital Image processing, Tata McGraw Hill publishers, 2009

- 1. Digital Image Processing and Analysis-Human and Computer Vision Application with CVIP Tools ScotteUmbaugh, 2nd Ed, CRC Press, 2011.
- 2. Digital Video Processing M. Tekalp, Prentice Hall International.
- 3. Digital Image Processing S.Jayaraman, S.Esakkirajan, T.Veera Kumar TMH, 2009.
- 4. Multidimentional Signal, Image and Video Processing and Coding John Woods, 2nd Ed, Elsevier.
- 5. Digital Image Processing with MATLAB and Labview Vipula Singh, Elsevier.
- 6. Video Demystified A Hand Book for the Digital Engineer Keith Jack, 5th Ed., Elsevier.

	L	Р	С
I Year II Semester		0	•
	4	0	3

DETECTION AND ESTIMATION THEORY

UNIT –I:

Random Processes:

Discrete Linear Models, Markov Sequences and Processes, Point Processes, and Gaussian Processes.

UNIT –II:

Detection Theory:

Basic Detection Problem, Maximum A posteriori Decision Rule, Minimum Probability of Error Classifier, Bayes Decision Rule, Multiple-Class Problem (Bayes)- minimum probability error with and without equal a priori probabilities, Neyman-Pearson Classifier, General Calculation of Probability of Error, General Gaussian Problem, Composite Hypotheses.

UNIT –III:

Linear Minimum Mean-Square Error Filtering:

Linear Minimum Mean Squared Error Estimators, Nonlinear Minimum Mean Squared Error Estimators. Innovations, Digital Wiener Filters with Stored Data, Real-time Digital Wiener Filters, Kalman Filters.

UNIT -IV:

Statistics:

Measurements, Nonparametric Estimators of Probability Distribution and Density Functions, Point Estimators of Parameters, Measures of the Quality of Estimators, Introduction to Interval Estimates, Distribution of Estimators, Tests of Hypotheses, Simple Linear Regression, Multiple Linear Regression.

UNIT –V:

Estimating the Parameters of Random Processes from Data:

Tests for Stationarity and Ergodicity, Model-free Estimation, Model-based Estimation of Autocorrelation Functions, Power Special Density Functions.

TEXT BOOKS:

- 1. Random Signals: Detection, Estimation and Data Analysis K. Sam Shanmugan& A.M. Breipohl, Wiley India Pvt. Ltd, 2011.
- 2. Random Processes: Filtering, Estimation and Detection Lonnie C. Ludeman, Wiley India Pvt. Ltd., 2010.

- 1. Fundamentals of Statistical Signal Processing: Volume I Estimation Theory– Steven.M.Kay, Prentice Hall, USA, 1998.
- 2. Fundamentals of Statistical Signal Processing: Volume I Detection Theory– Steven.M.Kay, Prentice Hall, USA, 1998.
- 3. Introduction to Statistical Signal Processing with Applications Srinath, Rajasekaran, Viswanathan, 2003, PHI.
- 4. Statistical Signal Processing: Detection, Estimation and Time Series Analysis Louis L.Scharf, 1991, Addison Wesley.
- 5. Detection, Estimation and Modulation Theory: Part I Harry L. Van Trees, 2001, John Wiley & Sons, USA.
- 6. Signal Processing: Discrete Spectral Analysis Detection & Estimation Mischa Schwartz, Leonard Shaw, 1975, McGraw Hill.

I Voor II Somostor	L	Р	С
I Tear II Semester	4	0	3

DIGITAL SIGNAL PROCESSORS AND ARCHITECTURES

UNIT –I:

Introduction to Digital Signal Processing:

Introduction, A Digital signal-processing system, The sampling process, Discrete time sequences. Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation.

Computational Accuracy in DSP Implementations:

Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

UNIT –II:

Architectures for Programmable DSP Devices:

Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation UNIT, Programmability and Program Execution, Speed Issues, Features for External interfacing.

UNIT -III:

Programmable Digital Signal Processors:

Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline operation of TMS320C54XX Processors.

UNIT –IV:

Analog Devices Family of DSP Devices:

Analog Devices Family of DSP Devices – ALU and MAC block diagram, Shifter Instruction, Base Architecture of ADSP 2100, ADSP-2181 high performance Processor.

Introduction to Blackfin Processor - The Blackfin Processor, Introduction to Micro Signal Architecture, Overview of Hardware Processing Units and Register files, Address Arithmetic Unit, Control Unit, Bus Architecture and Memory, Basic Peripherals.

UNIT –V:

Interfacing Memory and I/O Peripherals to Programmable DSP Devices:

Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).

TEXT BOOKS:

- 1. Digital Signal Processing Avtar Singh and S. Srinivasan, Thomson Publications, 2004.
- 2. A Practical Approach to Digital Signal Processing K Padmanabhan, R. Vijayarajeswaran, Ananthi. S, New Age International, 2006/2009
- 3. EmbeddedSignalProcessingwiththeMicroSignalArchitecturePublisher: Woon-SengGan, Sen M. Kuo, Wiley-IEEE Press, 2007

- 1. Digital Signal Processors, Architecture, Programming and Applications B. Venkataramani and M. Bhaskar, 2002, TMH.
- 2. Digital Signal Processing –Jonatham Stein, 2005, John Wiley.
- 3. DSP Processor Fundamentals, Architectures & Features Lapsley et al. 2000, S. Chand & Co.
- 4. Digital Signal Processing Applications Using the ADSP-2100 Family by The Applications Engineering Staff of Analog Devices, DSP Division, Edited by Amy Mar, PHI
- 5. *The Scientist and Engineer's Guide to Digital Signal Processing* by Steven W. Smith, Ph.D., California Technical Publishing, ISBN 0-9660176-3-3, 1997
- 6. *Embedded Media Processing* by David J. Katz and Rick Gentile of Analog Devices, Newnes, ISBN 0750679123, 2005

I Year II Semester

L	Р	С
4	0	3

COMPUTER VISION

(ELECTIVE – III)

I Year II Semester

L	Р	С
4	0	3

EMBEDDED SYSTEM DESIGN (ELECTIVE – III)

UNIT-I: Introduction

An Embedded System-Definition, Examples, Current Technologies, Integration in system Design, Embedded system design flow, hardware design concepts, software development, processor in an embedded system and other hardware units, introduction to processor based embedded system design concepts.

UNIT-II: Embedded Hardware

Embedded hardware building blocks, Embedded Processors – ISA architecture models, Internal processor design, processor performance, Board Memory – ROM, RAM, Auxiliary Memory, Memory Management of External Memory, Board Memory and performance.

Embedded board Input / output – Serial versus Parallel I/O, interfacing the I/O components, I/O components and performance, Board buses – Bus arbitration and timing, Integrating the Bus with other board components, Bus performance.

UNIT-III: Embedded Software

Device drivers, Device Drivers for interrupt-Handling, Memory device drivers, On-board bus device drivers, Board I/O drivers, Explanation about above drivers with suitable examples.

Embedded operating systems – Multitasking and process Management, Memory Management, I/O and file system management, OS standards example – POSIX, OS performance guidelines, Board support packages, Middleware and Application Software – Middle ware, Middleware examples, Application layer software examples.

UNIT-IV: Embedded System Design, Development, Implementation and Testing

Embedded system design and development lifecycle model, creating an embedded system architecture, introduction to embedded software development process and tools- Host and Target machines, linking and locating software, Getting embedded software into the target system, issues in Hardware-Software design and co-design.

Implementing the design-The main software utility tool, CAD and the hardware, Translation tools, Debugging tools, testing on host machine, simulators, Laboratory tools, System Boot-Up.

UNIT-V: Embedded System Design-Case Studies

Case studies- Processor design approach of an embedded system –Power PC Processor based and Micro Blaze Processor based Embedded system design on Xilinx platform-NiosII Processor based Embedded system design on Altera platform-Respective Processor architectures should be taken into consideration while designing an Embedded System.

TEXT BOOKS:

- 1. Tammy Noergaard "Embedded Systems Architecture: A Comprehensive Guide for Engineers and Programmers", Elsevier(Singapore) Pvt.Ltd.Publications, 2005.
- 2. Frank Vahid, Tony D. Givargis, "Embedded system Design: A Unified Hardware/Software Introduction", John Wily & Sons Inc.2002.

- 1. Peter Marwedel, "Embedded System Design", Science Publishers, 2007.
- 2. Arnold S Burger, "Embedded System Design", CMP.
- 3. Rajkamal, "Embedded Systems: Architecture, Programming and Design", TMH Publications, Second Edition, 2008.

	L	Р	С
I Year II Semester	4	0	3

BIOMEDICAL SIGNAL PROCESSING (ELECTIVE – III)

UNIT -I:

Random Processes:

Stationary random process, Ergodicity, Power spectral density and autocorrelation function of random processes. Noise power spectral density analysis, Noise bandwidth and noise figure of systems.

UNIT -II:

Data Compression Techniques:

Lossy and Lossless data reduction Algorithms, ECG data compression using Turning point, AZTEC, CORTES, Huffman coding, vector quantisation, DICOM Standards

UNIT -III: Cardiological Signal Processing:

Pre-processing, QRS Detection Methods, Rhythm analysis, Arrhythmia Detection Algorithms, Automated ECG Analysis, ECG Pattern Recognition.

Adaptive Noise Cancelling: Principles of Adaptive Noise Cancelling, Adaptive Noise Cancelling with the LMS Adaptation Algorithm, Noise Cancelling Method to Enhance ECG Monitoring, Fetal ECG Monitoring.

UNIT -IV:

Signal Averaging, Polishing: Mean and trend removal, Prony's method, Prony's Method based on the Least Squares Estimate, Linear prediction, Yule – Walker (Y –W) equations, Analysis of Evoked Potentials.

UNIT -V:

Neurological Signal Processing:

Modelling of EEG Signals, Detection of spikes and spindles Detection of Alpha, Beta and Gamma Waves, Auto Regressive (A.R.) modelling of seizure EEG, Sleep Stage analysis, Inverse Filtering, Least squares and polynomial modelling.

TEXT BOOKS:

- Probability, Random Variables & Random Signal Principles Peyton Z. Peebles, 4th Ed., 2009, TMH.
- 2. Biomedical Signal Processing- Principles and Techniques D. C. Reddy, 2005, TMH.

REFERENCE BOOKS:

- 1. Digital Biosignal Processing Weitkunat R, 1991, Elsevier.
- 2. Biomedical Signal Processing Akay M, IEEE Press.
- 3. Biomedical Signal Processing -Vol. I Time & Frequency Analysis Cohen.A, 1986, CRC Press.
- 4. Biomedical Digital Signal Processing: C-Language Experiments and Laboratory Experiments, Willis J.Tompkins, PHI.

Updates

www.universityupdates.in || www.android.universityupdates.in || www.ios.universityupdates.in

	L	Р	С
I Year II Semester	4	0	3

INTERNET PROTOCOLS (ELECTIVE - IV)

UNIT -I:

Internetworking Concepts:

Principles of Internetworking, Connectionless Internetworking, Application level Interconnections, Network level Interconnection, Properties of thee Internet, Internet Architecture, Wired LANS, Wireless LANs, Point-to-Point WANs, Switched WANs, Connecting Devices, TCP/IP Protocol Suite.

IP Address:

Classful Addressing: Introduction, Classful Addressing, Other Issues, Sub-netting and Supernetting

Classless Addressing: Variable length Blocks, Sub-netting, Address Allocation. Delivery, Forwarding, and Routing of IP Packets: Delivery, Forwarding, Routing, Structure of Router. **ARP and RARP:** ARP, ARP Package, RARP.

UNIT -II:

Internet Protocol (IP): Datagram, Fragmentation, Options, Checksum, IP V.6.

Transmission Control Protocol (TCP): TCP Services, TCP Features, Segment, A TCP Connection, State Transition Diagram, Flow Control, Error Control, Congestion Control, TCP Times.

Stream Control Transmission Protocol (SCTP): SCTP Services, SCTP Features, Packet Format, Flow Control, Error Control, Congestion Control.

Mobile IP: Addressing, Agents, Three Phases, Inefficiency in Mobile IP.

Classical TCP Improvements: Indirect TCP, Snooping TCP, Mobile TCP, Fast Retransmit/ Fast Recovery, Transmission/ Time Out Freezing, Selective Retransmission, Transaction Oriented TCP.

UNIT -III:

Unicast Routing Protocols (RIP, OSPF, and BGP): Intra and Inter-domain Routing, Distance Vector Routing, RIP, Link State Routing, OSPF, Path Vector Routing, BGP.

Multicasting and Multicast Routing Protocols: Unicast - Multicast- Broadcast, Multicast Applications, Multicast Routing, Multicast Link State Routing: MOSPF, Multicast Distance Vector: DVMRP.

UNIT -IV:

Domain Name System (DNS): Name Space, Domain Name Space, Distribution of Name Space, and DNS in the internet.

Remote Login TELNET: Concept, Network Virtual Terminal (NVT).

File Transfer FTP and TFTP: File Transfer Protocol (FTP).

Electronic Mail: SMTP and POP.

Network Management-SNMP: Concept, Management Components, World Wide Web- HTTP Architecture.

UNIT -V:

Multimedia:

Digitizing Audio and Video, Network security, security in the internet firewalls. Audio and Video Compression, Streaming Stored Audio/Video, Streaming Live Audio/Video, Real-Time Interactive Audio/Video, RTP, RTCP, Voice Over IP. Network Security, Security in the Internet, Firewalls.

TEXT BOOKS:

- 1. TCP/IP Protocol Suite- Behrouz A. Forouzan, Third Edition, TMH
- 2. Internetworking with TCP/IP Comer 3 rd edition PHI

- 1. High performance TCP/IP Networking- Mahbub Hassan, Raj Jain, PHI, 2005
- 2. Data Communications & Networking B.A. Forouzan– 2nd Edition TMH
- 3. High Speed Networks and Internets- William Stallings, Pearson Education, 2002.
- 4. Data and Computer Communications, William Stallings, 7th Edition., PEI.
- 5. The Internet and Its Protocols AdrinFarrel, Elsevier, 2005.

	\mathbf{L}	Р	С
I Year II Semester	4	0	3

RADAR SIGNAL PROCESSING (ELECTIVE -IV)

UNIT -I:

Introduction:

Radar Block Diagram, Bistatic Radar, Monostatic Radar, Radar Equation, Information Available from Radar Echo. Review of Radar Range Performance– General Radar Range Equation, Radar Detection with Noise Jamming, Beacon and Repeater Equations, MTI and Pulse Doppler Radar.

Matched Filter Receiver – Impulse Response, Frequency Response Characteristic and its Derivation, Matched Filter and Correlation Function, Correlation Detection and Cross-Correlation Receiver, Efficiency of Non-Matched Filters, Matched Filter for Non-White Noise.

UNIT -II:

Detection of Radar Signals in Noise:

Detection Criteria – Neyman-Pearson Observer, Likelihood-Ratio Receiver, Inverse Probability Receiver, Sequential Observer, Detectors–Envelope Detector, Logarithmic Detector, I/Q Detector. Automatic Detection-CFAR Receiver, Cell Averaging CFAR Receiver, CFAR Loss, CFAR Uses in Radar. Radar Signal Management–Schematics, Component Parts, Resources and Constraints.

UNIT -III:

Waveform Selection [3, 2]:

Radar Ambiguity Function and Ambiguity Diagram – Principles and Properties; Specific Cases – Ideal Case, Single Pulse of Sine Wave, Periodic Pulse Train, Single Linear FM Pulse, Noise Like Waveforms, Waveform Design Requirements, Optimum Waveforms for Detection in Clutter, Family of Radar Waveforms.

UNIT -IV:

Pulse Compression in Radar Signals:

Introduction, Significance, Types, Linear FM Pulse Compression – Block Diagram, Characteristics, Reduction of Time Side lobes, Stretch Techniques, Generation and Decoding of FM Waveforms – Block Schematic and Characteristics of Passive System, Digital Compression, SAW Pulse Compression.

UNIT V:

Phase Coding Techniques:

Principles, Binary Phase Coding, Barker Codes, Maximal Length Sequences (MLS/LRS/PN), Block Diagram of a Phase Coded CW Radar.

Poly Phase Codes : Frank Codes, Costas Codes, Non-Linear FM Pulse Compression, Doppler Tolerant PC Waveforms – Short Pulse, Linear Period Modulation (LPM/HFM), Sidelobe Reduction for Phase Coded PC Signals.

TEXT BOOKS:

- 1. Radar Handbook M.I. Skolnik, 2nd Ed., 1991, McGraw Hill.
- 2. Radar Design Principles : Signal Processing and The Environment Fred E. Nathanson, 2nd Ed., 1999, PHI.
- 3. Introduction to Radar Systems M.I. Skolnik, 3rd Ed., 2001, TMH.

- 1. Radar Principles Peyton Z. Peebles, Jr., 2004, John Wiley.
- 2. Radar Signal Processing and Adaptive Systems R. Nitzberg, 1999, Artech House.

lomostor	L	Р	С
11 Semester	4	0	3

WIRELESS COMMUNICATIONS AND NETWORKS ELECTIVE - IV

UNIT -I:

I Year

The Cellular Concept-System Design Fundamentals:

Introduction, Frequency Reuse, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference, Power Control for Reducing interference, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations, Trunking and Grade of Service

UNIT –II:

Mobile Radio Propagation: Large-Scale Path Loss:

Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, Basic Propagation Mechanisms, **Reflection**: Reflection from Dielectrics, Brewster Angle, Reflection from prefect conductors, Ground Reflection (Two-Ray) Model, **Diffraction**: Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models- Longley-Ryce Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models-Partition losses (Same Floor), Partition losses between Floors, Log-distance path loss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling.

UNIT –III:

Mobile Radio Propagation: Small –Scale Fading and Multipath

Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV:

Equalization and Diversity

Introduction, Fundamentals of Equalization, Training a Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity -Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

UNIT -V:

Wireless Networks

Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, HiperLan, WLL.

TEXT BOOKS:

- 1. Wireless Communications, Principles, Practice Theodore, S. Rappaport, 2nd Ed., 2002, PHI.
- 2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.
- 3. Mobile Cellular Communication GottapuSasibhushanaRao, Pearson Education, 2012.

- 1. Principles of Wireless Networks KavehPahLaven and P. Krishna Murthy, 2002, PE
- 2. Wireless Digital Communications KamiloFeher, 1999, PHI.
- 3. Wireless Communication and Networking William Stallings, 2003, PHI.
- 4. Wireless Communication UpenDalal, Oxford Univ. Press
- 5. Wireless Communications and Networking Vijay K. Gary, Elsevier.

I Year II Semester	L	Р	С
	4	0	3

ADVANCED SIGNAL PROCESSING LAB

Note:

- A. Minimum of 10 Experiments have to be conducted
- B. All Simulations are be carried out using MATLAB/DSP Processors/Labview Software & DSP Kits
- 1. Study of various addressing modes of DSP using simple programming examples
- 2. Generation of waveforms using recursive/filter methods
- 3. Sampling of input signal and display
- 4. Implementation of Linear and Circular Convolution for sinusoidal signals
- 5. Framing & windowing of speech signal.
- 6. Finding voiced & unvoiced detection for each frame of speech signal.
- 7. IIR Filter implementation using probe points
- 8. Implementation of FIR filters on DSP processor
- 9. Loop back using DSK kit
- 10. Real time signal enhancement using Adaptive Filter.
- 11. Representation of different Q-formats using GEL function
- 12. Verification of Finite word length effects (Overflow, Coefficient Quantization, Scaling and Saturation mode in DSP processors)
- 13. Image enhancement using spatial & frequency domain
- 14. Implementation of Image segmentation techniques
- 15. Extraction of frames from Video signal