DR23 wef Batch 2023-24

DADI INSTITUTE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institute) Approved by A.I.C.T.E & Permanently affiliated to JNTU GV

B. Tech (Regular-Full time)

(Civil Engineering)

(Effective for the students admitted into I year from the Academic Year **2023-24** onwards)

&

B.Tech.(Lateral Entry Scheme)

(Effective for the students admitted into II year through Lateral Entry Scheme from the Academic Year 2024 - 25 onwards)

B.TECH. - COURSE STRUCTURE – R23 (Applicable from the academic year 2023-24 onwards)

S.No.	Course Name	Category	L-T-P-C
1	Physical Activities Sports, Yoga and Meditation, Plantation	МС	0-0-6-0
2	Career Counseling	МС	2-0-2-0
3	Orientation to all branches career options, tools, etc.	МС	3-0-0-0
4	Orientation on admitted Branch corresponding labs, tools and platforms	EC	2-0-3-0
5	Proficiency Modules & Productivity Tools	ES	2-1-2-0
6	Assessment on basic aptitude and mathematical skills	МС	2-0-3-0
7	Remedial Training in Foundation Courses	MC	2-1-2-0
8	Human Values & Professional Ethics	МС	3-0-0-0
9	Communication Skills focus on Listening, Speaking, Reading, Writing skills	BS	2-1-2-0
10	Concepts of Programming	ES	2-0-2-0

INDUCTION PROGRAMME

DR23 wef Batch 2023-24

DADI INSTITUTE OF ENGINEERING & TECHNOLOGY

(An Autonomous Institute)

Group-B

B.TECH- Civil Engineering

	I Year I Semester							
S.No ·	Course Code	Course Name	L	Т	Р	Credits		
1.	R23BS01	Linear Algebra & Calculus	3	0	0	3		
2.	R23BS04	Engineering Chemistry	3	0	0	3		
3.	R23ES07	Introduction to Programming	3	0	0	3		
4.	R23ES03	Engineering Graphics	1	0	4	3		
5.	R23ES04	Basic Electrical & Electronics Engineering	3	0	0	3		
6.	R23BS04	Engineering Chemistry Lab	0	0	2	1		
7.	R23ES07	Computer Programming Lab	0	0	3	1.5		
8.	R23ES05	Electrical & Electronics Engineering Workshop	0	0	3	1.5		
9.	R23MC02	NSS/NCC/Scouts &Guides/Community Service	0	0	1	0.5		
		Total				19.5		

	I Year II Semester							
S.No ·	Course Code	Course Name	L	Т	Р	Credits		
1.	R23BS02	Differential Equations and Vector Calculus	3	0	0	3		
2.	R23BS03	Engineering Physics	3	0	0	3		
3.	R23HS01	Communicative English	2	0	0	2		
4.	R23ES01	Basic Civil & Mechanical Engineering	3	0	0	3		
5.	R23PC01	Engineering Mechanics	3	0	0	3		
6.	R23HS01	Communicative English Lab	0	0	2	1		
7.	R23BS03	Engineering Physics Lab	0	0	2	1		
8.	R23ES06	IT workshop	0	0	2	1		
9.	R23ES02	Engineering Workshop	0	0	3	1.5		
10.	R23PC01	Engineering Mechanics & Building Practices Lab	0	0	3	1.5		
11.	R23MC01	Health and Wellness, Yoga and Sports	0	0	1	0.5		
		Total				20.5		

Civil Engineering
B. Tech.–II Year I Semester

No.	Category	Title	L	Т	Р	Credits
1	BS	Numerical and Statistical Methods	3	0	0	3.0
2	HSMC	Universal Human Values–Understanding Harmony and Ethical Human Conduct	2	1	0	3.0
3	Engineering Science	Surveying	3	0	0	3.0
4	Professional Core	Strength of Materials	3	0	0	3.0
5	Professional Core	Fluid Mechanics	3	0	0	3.0
6	Professional Core	Surveying Lab	0	0	3	1.5
7	Professional Core	Strength of Materials Lab	0	0	3	1.5
8	Skill Enhancement Course	Soft skills	0	1	2	2.0
9	Audit Course	Environmental Science	2	0	0	-
	Total			2	8	20.0

B. Tech. II Year II Semester

No.	Category	Title	L	Т	Р	Credits
1	Management Elective-I	Managerial Economics and FinancialAnalysis Business Environment Organizational Behavior	2	0	0	2.0
2	Engineering Science	Engineering Geology (Layered Learning)	2	0	2	3.0
3	Professional Core	Building Materials and Concrete Technology	3	0	0	3.0
4	Professional Core	Structural Analysis	3	0	0	3.0
5	Professional Core	Hydraulics and Hydraulic Machinery	3	0	0	3.0
6	Professional Core	Concrete Technology Lab	0	0	2	1.0
7	Professional Core	Building Planning and Drawing	0	0	4	2.0
8	Skill Enhancement course	Auto CAD	0	1	2	2.0
9	Engineering Science	Design Thinking and Innovation	1	0	2	2.0
		Total	15	1	10	21.0

L	Т	Р	С
3	0	0	3

LINEAR ALGEBRA & CALCULUS (Common to All Branches of Engineering)

Course Objectives:

To equip the students with standard concepts and tools of mathematics to handle various realworld problems and their applications.

Course Outcomes:

At the end of the course, the student will be able to:

- develop matrix algebra techniques that is needed by engineers for practical applications.
- to find the eigen values and eigen vectors and solve the problems by using linear transformation
- learn important tools of calculus in higher dimensions.
- familiarize with functions of several variables which is useful in optimization.
- familiarize with double and triple integrals of functions of several variables in two and three dimensions.

UNIT - I: Matrices

Rank of a matrix by echelon form, normal form. Cauchy –Binet formulae (without proof). Inverse of Non- singular matrices by Gauss-Jordan method

System of linear equations: Solving system of Homogeneous and Non-Homogeneous equations by Gauss elimination method, Gauss Seidel Iteration Method.

UNIT- II: Linear Transformation and Orthogonal Transformation:

Eigen values, Eigen vectors and their properties(without Proof), Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form to canonical forms by Orthogonal Transformation

UNIT-III : Calculus

Mean Value Theorems: Rolle's Theorem, Lagrange's mean value theorem with their geometrical interpretation, Cauchy's mean value theorem, Taylor's and Maclaurin theorems with remainders (without proof), Problems and applications on the above theorems.

UNIT- IV : Partial differentiation and Applications (Multi variable calculus)

Partial derivatives, total derivatives, chain rule, change of variables, Taylor's and Maclaurin's series expansion of functions of two variables. Jacobians, maxima and minima of functions of two variables, method of Lagrange multipliers.

UNIT – V : Multiple Integrals (Multi variable Calculus)

Duble integrals - change of variables (Cartesian and Polar coordinates), Change of order of integration, cylindrical and spherical coordinates. Finding areas (by double integrals) and volumes (by double integrals and triple integrals).

Text books:

- 1. B.S.Grewal, HigherEngineeringMathematics, 44/e, KhannaPublishers, 2017.
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018.

Reference Books:

- 1. R.K.Jain and S.R.K.Iyengar, Advanced Engineering Mathematics, 5/e, Alpha Science International Ltd., 2021 (9th reprint).
- 2. George B. Thomas, Maurice D.Weir and Joel Hass, Thomas Calculus, 14/e, Pearson Publishers, 2018.
- 3. Glyn James, Advanced Modern Engineering Mathematics, 5/e, Pearson publishers, 2018.
- 4. Michael Greenberg, Advanced Engineering Mathematics, 9thedition, Pearson edn
- 5. H. K Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand, 2021

L	Т	P	C
3	0	0	3

ENGINEERING CHEMISTRY

Course Objectives:

- To familiarize engineering chemistry and its applications
- To impart the concept of soft and hard waters, softening methods of hard water
- To train the students on the principles and applications of ectrochemistry, polymers, surface chemistry, and cement

Course Outcomes: At the end of the course, the students will be able to

CO1: Demonstrate the corrosion prevention methods and factors affecting corrosion.

CO2: Explain the preparation, properties, and applications of thermoplastics & thermosetting, elastomers & conducting polymers.

CO3: Explain calorific values, octane number, refining of petroleum and cracking of oils.

CO4: Explain the setting and hardening of cement.

CO5: Summarize the concepts of colloids, micelle and nanomaterials.

UNIT I Water Technology

Soft and hardwater, Estimation of hardness of water by EDTA Method, Estimation of dissolved Oxygen - Boiler troubles –Priming, foaming, scale and sludge, Caustic embrittlement, Industrial water treatment – Specifications for drinking water, Bureau of Indian Standards(BIS) and World health organization(WHO) standards, Ion-exchange processes - desalination of brackish water, reverse osmosis (RO) and electrodialysis.

UNIT II Electrochemistry and Applications

Electrodes –electrochemical cell, Nernst equation, cell potential calculations.

Primary cells – Zinc-air battery, Secondary cells – Nickel-Cadmium (NiCad), and lithium ion batteries- working principle of the batteries including cell reactions; Fuel cells-Basic Concepts, the principle and working of hydrogen-oxygen Fuel cell.

Corrosion: Introduction to corrosion, electrochemical theory of corrosion, differential aeration cell corrosion, galvanic corrosion, metal oxide formation by dry electrochemical corrosion, Pilling Bedworth ratios and uses, Factors affecting the corrosion, cathodic and anodic protection, electroplating and electro less plating (Nickel and Copper).

UNIT III Polymers and Fuel Chemistry

Introduction to polymers, functionality of monomers, Mechanism of chain growth, step growth polymerization.

Thermoplastics and Thermo-setting plastics-: Preparation, properties and applications of poly styrene. PVC Nylon 6,6 and Bakelite.

Elastomers - Preparation, properties and applications of Buna S, Buna N, Thiokol rubbers.

Fuels – Types of fuels, calorific value of fuels, numerical problems based on calorific value; Analysis of coal (Proximate and Ultimate analysis), Liquid Fuels, refining of petroleum, Octane and Cetane number- alternative fuels- propane, methanol, ethanol and bio fuel-bio diesel.

UNIT IV Modern Engineering Materials

Composites- Definition, Constituents, Classification- Particle, Fibre and Structural reinforced composites, properties and Engineering applications

Refractories- Classification, Properties, Factors affecting the refractory materials and Applications.

Lubricants- Classification, Functions of lubricants, Mechanism, Properties of lubricating oils – Viscosity, Viscosity Index, Flash point, Fire point, Cloud point, saponification and Applications.

Building materials- Portland Cement, constituents, Setting and Hardening of cement.

UNIT V Surface Chemistry and Nanomaterials

Introduction to surface chemistry, colloids, nanometals and nanometal oxides, micelle formation, synthesis of colloids (Braggs Method), chemical and biological methods of preparation of nanometals and metal oxides, stabilization of colloids and nanomaterials by stabilizing agents, adsorption isotherm (Freundlich and Longmuir), BET equation (no derivation) applications of colloids and nanomaterials – catalysis, medicine, sensors, etc.

Textbooks:

- 1. Jain and Jain, Engineering Chemistry, 16/e, DhanpatRai, 2013.
- 2. Peter Atkins, Julio de Paula and James Keeler, Atkins' Physical Chemistry, 10/e, Oxford University Press, 2010.

Reference Books:

- 1. H.F.W. Taylor, Cement Chemistry, 2/e, Thomas Telford Publications, 1997.
- 2. D.J. Shaw, Introduction to Colloids and Surface Chemistry, Butterworth-Heineman, 1992.
- 3. Textbook of Polymer Science, Fred W. Billmayer Jr, 3rd Edition

L	Т	P	С
3	0	0	3

I Year-I Semester

INTRODUCTION TO PROGRAMMING (Common to All branches of Engineering)

Course Objectives:

The objectives of this course is to acquire knowledge on the

i. To impart adequate knowledge on the need of programming languages and problem-solving techniques and develop programming skills.

ii. To enable effective usage of Control Structures and Implement different operations on arrays.iii. To demonstrate the use of Strings and Functions.

iv. To impart the knowledge of pointers and understand the principles of dynamic memory allocation.

v. To understand structures and unions and illustrate the file concepts and its operations.

vi. To impart the Knowledge Searching and Sorting Techniques

UNIT-I Introduction to Computer Problem Solving:

Programs and Algorithms, Computer Problem Solving Requirements, Phases of Problem Solving, Problem. Solving Strategies, Top-Down Approach, Algorithm Designing, Program Verification, Improving Efficiency, Algorithm Analysis and Notations.

UNIT-II Introduction to C Programming:

Introduction, Structure of a C Program. Comments, Keywords, Identifiers, Data Types, Variables, Constants, Input/output Statements. Operators, Type Conversion. Control Flow, Relational Expressions: Conditional Branching Statements: if, if-else, if-else—if, switch. Basic Loop Structures: while, do-while loops, for loop, nested loops, The Break and Continue Statements, goto statement.

UNIT-III Arrays:

Introduction, Operations on Arrays, Arrays as Function Arguments, Two Dimensional Arrays, Multidimensional Arrays. Pointers: Concept of a Pointer, Declaring and Initializing Pointer Variables, Pointer Expressions and Address Arithmetic, Null Pointers, Generic Pointers, Pointers as Function Arguments, Pointers and Arrays, Pointer to Pointer, Dynamic Memory Allocation, Dangling Pointer, Command Line Arguments.

UNIT-IV Functions:

Introduction Function : Declaration, Function Definition, Function Call, Categories of Functions, Passing Parameters to Functions, Scope of Variables, Variable Storage Classes. Recursion. Strings: String Fundamentals, String Processing with and without Library Functions, Pointers and Strings.

UNIT-V

Structures, Unions, Bit Fields:Introduction, Nested Structures, Arrays of Structures, Structures

and Functions, Self-Referential Structures, Unions, Enumerated Data Type —Enum variables, Using Typedef keyword, Bit Fields. Data Files: Introduction to Files, Using Files in C, Reading from Text Files, Writing to Text Files, Random File Access.

Note: The syllabus is designed with C Language as the fundamental language of implementation.

Course Outcomes:

At the end of the Course, Student should be able to:

i . Illustrate the Fundamental concepts of Computers and basics of computer programming and problem-solving approach

ii. Understand the Control Structures, branching and looping statements

iii. Use of Arrays and Pointers in solving complex problems.

iv. Develop Modular program aspects and Strings fundamentals.

v. Demonstrate the ideas of User Defined Data types, files. Solve real world problems using the concept of Structures, Unions and File operations.

Text Books:

1. A Structured Programming Approach Using C, Forouzan, Gilberg, Cengage.

- 2. How to solve it by Computer, R. G. Dromey, and Pearson Education.
- 3. Programming In C A-Practial Approach. Ajay Mittal, Pearson

References:

1. Byron Gottfried, Schaum's Outline of Programming with C, McGraw-Hill.

- 2. Computer Programming. Reema Thareja, Oxford University Press
- 3. The C Programming Language, Dennis Richie And Brian Kernighan, Pearson Education.
- 4. Programming In C, Ashok Kamthane, Second Edition, Pearson Publication.

5. Let us C, YaswanthKanetkar, 16th Edition, BPB Publication.

6.Computing fundamentals and C Programming, Balagurusamy, E., McGraw-Hill Education, 2008

Web References:

- 1. http://www.c4learn.com/
- 2. http://www.geeksforgeeks.org/c/

3. http://nptel.ac.in/courses/122104019/

- 4. http://www.learn-c.org/
- 5. https://www.tutorialspoint.com/cprogramming/

L	Т	P	С
1	0	4	3

ENGINEERING GRAPHICS (Common to All branches of Engineering)

Course Objectives:

- To enable the students with various concepts like dimensioning, conventions and standards related to Engineering Drawing
- To impart knowledge on the projection of points, lines and plane surfaces
- To improve the visualization skills for better understanding of projection of solids
- To develop the imaginative skills of the students required to understand Section of solids and Developments of surfaces.
- To make the students understand the viewing perception of a solid object in Isometric and Perspective projections.

Course Outcomes:

CO1: Understand the principles of engineering drawing, including engineering curves, scales, orthographic and isometric projections.

CO2: Draw and interpret orthographic projections of points, lines, planes and solids in front, top and side views.

CO3: Understand and draw projection of solids in various positions in first quadrant.

CO4: Explain principles behind development of surfaces.

CO5: Prepare isometric and perspective sections of simple solids.

UNIT I

Introduction: Lines, Lettering and Dimensioning, Geometrical Constructions and Constructing regular polygons by general methods.

Curves: construction of ellipse, parabola and hyperbola by general, Cycloids, Involutes, Normal and tangent to Curves.

Scales: Plain scales, diagonal scales and vernier scales.

UNIT II

Orthographic Projections: Reference plane, importance of reference lines or Plane, Projections of a point situated in any one of the four quadrants.

Projections of Straight Lines: Projections of straight lines parallel to both reference planes, perpendicular to one reference plane and parallel to other reference plane, inclined to one reference plane and parallel to the other reference plane. Projections of Straight Line Inclined to both the reference planes

Projections of Planes: regular planes Perpendicular to both reference planes, parallel to one reference plane and inclined to the other reference plane; plane inclined to both the reference planes.

UNIT III

Projections of Solids: Types of solids: Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to horizontal plane, Axis perpendicular to vertical plane and Axis parallel to both the reference planes, Projection of Solids with axis inclined to one reference plane and parallel to another plane.

UNIT IV

Sections of Solids: Perpendicular and inclined section planes, Sectional views and True shape of section, Sections of solids in simple position only.

Development of Surfaces: Methods of Development: Parallel line development and radial line development. Development of a cube, prism, cylinder, pyramid and cone.

UNIT V

Conversion of Views: Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer graphics: Creating 2D&3D drawings of objects including PCB and Transformations using Auto CAD (*Not for end examination*).

Textbook:

1. N. D. Bhatt, Engineering Drawing, Charotar Publishing House, 2016.

Reference Books:

- 1. Engineering Drawing, K.L. Narayana and P. Kannaiah, Tata McGraw Hill, 2013.
- 2. Engineering Drawing, M.B.Shah and B.C. Rana, Pearson Education Inc,2009.
- 3. Engineering Drawing with an Introduction to AutoCAD, Dhananjay Jolhe, Tata McGraw Hill, 2017.

L	Т	Р	С
3	0	0	3

BASIC ELECTRICAL & ELECTRONICS ENGINEERING (Common to All branches of Engineering)

Course Objectives

To expose to the field of electrical & electronics engineering, laws and principles of electrical/ electronic engineering and to acquire fundamental knowledge in the relevant field.

Course Outcomes: After the completion of the course students will be able to

Course Outcomes:

CO1: Remember the fundamental laws, operating principles of motors, generators, MC and MI instruments.

CO2: Understand the problem solving concepts associated to AC and DC circuits, construction and operation of AC and DC machines, measuring instruments; different power generation mechanisms, Electricity billing concept and important safety measures related to electrical operations.

CO3: Apply mathematical tools and fundamental concepts to derive various equations related to machines, circuits and measuring instruments; electricity bill calculations and layout representation of electrical power systems.

CO4: Analyze different electrical circuits, performance of machines and measuring instruments.

CO5: Evaluate different circuit configurations, Machine performance and Power systems operation.

PART A: BASIC ELECTRICAL ENGINEERING

UNIT I DC & AC Circuits

DC Circuits: Electrical circuit elements (R, L and C), Ohm's Law and its limitations, KCL & KVL, series, parallel, series-parallel circuits, Super Position theorem, Simple numerical problems.

AC Circuits: A.C. Fundamentals: Equation of AC Voltage and current, waveform, time period, frequency, amplitude, phase, phase difference, average value, RMS value, form factor, peak factor, Voltage and current relationship with phasor diagrams in R, L, and C circuits, Concept of Impedance, Active power, reactive power and apparent power, Concept of power factor (Simple Numerical problems).

UNIT II Machines and Measuring Instruments

Machines: Construction, principle and operation of (i) DC Motor, (ii) DC Generator, (iii) Single Phase Transformer, (iv) Three Phase Induction Motor and (v) Alternator, Applications of electrical machines.

Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil (PMMC), Moving Iron (MI) Instruments and Wheat Stone bridge.

UNIT III Energy Resources, Electricity Bill & Safety Measures

Energy Resources: Conventional and non-conventional energy resources; Layout and operation of various Power Generation systems: Hydel, Nuclear, Solar & Wind power generation.

Electricity bill: Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. Definition of –unit I used for consumption of electrical energy, two-part electricity tariff, calculation of electricity bill for domestic consumers.

Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker (MCB), merits and demerits. Personal safety measures: Electric Shock, Earthing and its types, Safety Precautions to avoid shock.

Textbooks:

- 1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition
- 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013
- 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition

Reference Books:

- 1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Mc Graw Hill, 2019, Fourth Edition
- 2. Principles of Power Systems, V.K. Mehtha, S.Chand Technical Publishers, 2020
- 3. Basic Electrical Engineering, T. K. Nagsarkar and M. S. Sukhija, Oxford University Press, 2017
- 4. Basic Electrical and Electronics Engineering, S. K. Bhatacharya, Person Publications, 2018, Second Edition.

Web Resources:

- 1. https://nptel.ac.in/courses/108105053
- 2. https://nptel.ac.in/courses/108108076

PART B: BASIC ELECTRONICS ENGINEERING

Course Objectives:

• To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics.

UNIT I SEMICONDUCTOR DEVICES

Introduction - Evolution of electronics – Vacuum tubes to nano electronics - Characteristics of PN Junction Diode — Zener Effect — Zener Diode and its Characteristics. Bipolar Junction Transistor — CB, CE, CC Configurations and Characteristics — Elementary Treatment of Small Signal CE Amplifier.

UNIT II BASIC ELECTRONIC CIRCUITS AND INSTRUMENTTAION

Rectifiers and power supplies: Block diagram description of a dc power supply, working of a full wave bridge rectifier, capacitor filter (no analysis), working of simple zener voltage regulator. Amplifiers: Block diagram of Public Address system, Circuit diagram and working of common emitter (RC coupled) amplifier with its frequency response. Electronic Instrumentation: Block diagram of an electronic instrumentation system.

UNIT III DIGITAL ELECTRONICS

Overview of Number Systems, Logic gates including Universal Gates, BCD codes, Excess-3 code, Gray code, Hamming code. Boolean Algebra, Basic Theorems and properties of Boolean Algebra, Truth Tables and Functionality of Logic Gates – NOT, OR, AND, NOR, NAND, XOR and XNOR. Simple combinational circuits–Half and Full Adders. Introduction to sequential circuits, Flip flops, Registers and counters (Elementary Treatment only)

Textbooks:

- 1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
- 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009

Reference Books:

- 1. R. S. Sedha, A Textbook of Electronic Devices and Circuits, S. Chand & Co, 2010.
- 2. Santiram Kal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

L	Т	Р	С
0	0	2	1

I Year-I Semester

ENGINEERING CHEMISTRY LAB

Course Objectives:

• To verify the fundamental concepts with experiments

Course Outcomes: At the end of the course, the students will be able to

- CO1: Determine the cell constant and conductance of solutions.
- CO2: Prepare advanced polymer materials.
- CO3: Determine the physical properties like surface tension, adsorption and viscosity.
- CO4: Estimate the Iron and Calcium in cement.

CO5: Calculate the hardness of water.

List of Experiments:

- 1. Determination of Hardness of a groundwater sample.
- 2. Estimation of Dissolved Oxygen by Winkler's method
- 3. Determination of Strength of an acid in Pb-Acid battery
- 4. Preparation of a polymer (Bakelite)
- 5. Determination of percentage of Iron in Cement sample by colorimetry
- 6. Estimation of Calcium in port land Cement
- 7. Preparation of nanomaterials by precipitation method.
- 8. Adsorption of acetic acid by charcoal
- 9. Determination of percentage Moisture content in a coal sample
- 10. Determination of Viscosity of lubricating oil by Redwood Viscometer 1
- 11. Determination of Viscosity of lubricating oil by Redwood Viscometer 2
- 12. Determination of Calorific value of gases by Junker's gas Calorimeter

Reference:

• "Vogel's Quantitative Chemical Analysis 6th Edition 6th Edition" Pearson Publications by J. Mendham, R.C. Denney, J.D. Barnes and B. Sivasankar

L	Т	Р	C
0	0	3	1.5

COMPUTER PROGRAMMING LAB (Common to All branches of Engineering)

Course Objectives:

The course aims to give students hands – on experience and train them on the concepts of the C- programming language.

Course Outcomes:

CO1: Read, understand, and trace the execution of programs written in C language.

CO2: Select the right control structure for solving the problem.

CO3: Develop C programs which utilize memory efficiently using programming constructs like pointers.

CO4: Develop, Debug and Execute programs to demonstrate the applications of arrays, functions, basic concepts of pointers in C.

UNIT I

WEEK 1

Objective: Getting familiar with the programming environment on the computer and writing the first program.

Suggested Experiments/Activities:

Tutorial 1: Problem-solving using Computers.

Lab1: Familiarization with programming environment

- i) Basic Linux environment and its editors like Vi, Vim & Emacs etc.
- ii) Exposure to Turbo C, gcc
- iii) Writing simple programs using printf(), scanf()

WEEK 2

Objective: Getting familiar with how to formally describe a solution to a problem in a series of finite steps both using textual notation and graphic notation.

Suggested Experiments /Activities:

Tutorial 2: Problem-solving using Algorithms and Flow charts.

Lab 1: Converting algorithms/flow charts into C Source code.

Developing the algorithms/flowcharts for the following sample programs

- i) Sum and average of 3 numbers
- ii) Conversion of Fahrenheit to Celsius and vice versa
- iii) Simple interest calculation

WEEK 3

Objective: Learn how to define variables with the desired data-type, initialize them with appropriate values and how arithmetic operators can be used with variables and constants.

Suggested Experiments/Activities:

Tutorial 3: Variable types and type conversions:

Lab 3: Simple computational problems using arithmetic expressions.

- i) Finding the square root of a given number
- ii) Finding compound interest
- iii) Area of a triangle using heron's formulae
- iv) Distance travelled by an object

UNIT II

WEEK 4

Objective: Explore the full scope of expressions, type-compatibility of variables & constants and operators used in the expression and how operator precedence works.

Suggested Experiments/Activities:

Tutorial4: Operators and the precedence and as associativity:

Lab4: Simple computational problems using the operator' precedence and associativity

- i) Evaluate the following expressions.
 - a. A+B*C+(D*E) + F*G
 - b. A/B*C-B+A*D/3
 - c. A+++B---A
 - d. J=(i++)+(++i)
- ii) Find the maximum of three numbers using conditional operator
- iii) Take marks of 5 subjects in integers, and find the total, average in float

WEEK 5

Objective: Explore the full scope of different variants of -if construct namely if-else, nullelse, if-else if*-else, switch and nested-if including in what scenario each one of them can be used and how to use them. Explore all relational and logical operators while writing conditionals for -if construct.

Suggested Experiments/Activities:

Tutorial 5: Branching and logical expressions:

Lab 5: Problems involving if-then-else structures.

- i) Write a C program to find the max and min of four numbers using if-else.
- ii) Write a C program to generate electricity bill.
- iii) Find the roots of the quadratic equation.
- iv) Write a C program to simulate a calculator using switch case.
- v) Write a C program to find the given year is a leap year or not.

WEEK 6

Objective: Explore the full scope of iterative constructs namely while loop, do-while loop and

for loop in addition to structured jump constructs like break and continue including when each of these statements is more appropriate to use.

Suggested Experiments/Activities:

Tutorial 6: Loops, while and for loops

Lab 6: Iterative problems e.g., the sum of series

- i) Find the factorial of given number using any loop.
- ii) Find the given number is a prime or not.
- iii) Compute sine and cos series
- iv) Checking a number palindrome
- v) Construct a pyramid of numbers.

UNIT III

WEEK 7:

Objective: Explore the full scope of Arrays construct namely defining and initializing 1-D and 2-D and more generically n-D arrays and referencing individual array elements from the defined array. Using integer 1-D arrays, explore search solution linear search.

Suggested Experiments/Activities:

Tutorial 7: 1 D Arrays: searching.

Lab 7:1D Array manipulation, linear search

- i) Find the min and max of a 1-D integer array.
- ii) Perform linear search on1D array.
- iii) The reverse of a 1D integer array
- iv) Find 2's complement of the given binary number.
- v) Eliminate duplicate elements in an array.

WEEK 8:

Objective: Explore the difference between other arrays and character arrays that can be used as Strings by using null character and get comfortable with string by doing experiments that will reverse a string and concatenate two strings. Explore sorting solution bubble sort using integer arrays.

Suggested Experiments/Activities:

Tutorial 8: 2 D arrays, sorting and Strings.

Lab 8: Matrix problems, String operations, Bubble sort

- i) Addition of two matrices
- ii) Multiplication two matrices
- iii) Sort array elements using bubble sort
- iv) Concatenate two strings without built-in functions
- v) Reverse a string using built-in and without built-in string functions

UNIT IV

WEEK 9:

Objective: Explore pointers to manage a dynamic array of integers, including memory allocation & amp; value initialization, resizing changing and reordering the contents of an array

and memory de-allocation using malloc (), calloc (), realloc () and free () functions. Gain experience processing command-line arguments received by C

Suggested Experiments/Activities:

Tutorial 9: Pointers, structures and dynamic memory allocation

Lab 9: Pointers and structures, memory dereference.

- i) Write a C program to find the sum of a 1D array using malloc()
- ii) Write a C program to find the total, average of n students using structures
- iii) Enter n students data using calloc() and display failed students list
- iv) Read student name and marks from the command line and display the student details along with the total.
- v) Write a C program to implement realloc()

WEEK 10:

Objective: Experiment with C Structures, Unions, bit fields and self-referential structures (Singly linked lists) and nested structures

Suggested Experiments/Activities:

Tutorial 10: Bitfields, Self-Referential Structures, Linked lists

Lab10 : Bitfields, linked lists

Read and print a date using dd/mm/yyyy format using bit-fields and differentiate the same without using bit- fields

- i) Create and display a singly linked list using self-referential structure.
- ii) Demonstrate the differences between structures and unions using a C program.
- iii) Write a C program to shift/rotate using bitfields.
- iv) Write a C program to copy one structure variable to another structure of the same type.

UNIT V

WEEK 11:

Objective: Explore the Functions, sub-routines, scope and extent of variables, doing some experiments by parameter passing using call by value. Basic methods of numerical integration

Suggested Experiments/Activities:

Tutorial 11: Functions, call by value, scope and extent,

Lab 11: Simple functions using call by value, solving differential equations using Eulers theorem.

- i) Write a C function to calculate NCR value.
- ii) Write a C function to find the length of a string.
- iii) Write a C function to transpose of a matrix.
- iv) Write a C function to demonstrate numerical integration of differential equations using Euler's method

WEEK 12:

Objective: Explore how recursive solutions can be programmed by writing recursive functions that can be invoked from the main by programming at-least five distinct problems that have naturally recursive solutions.

Suggested Experiments/Activities:

Tutorial 12: Recursion, the structure of recursive calls

Lab 12: Recursive functions

- i) Write a recursive function to generate Fibonacci series.
- ii) Write a recursive function to find the lcm of two numbers.
- iii) Write a recursive function to find the factorial of a number.
- iv) Write a C Program to implement Ackermann function using recursion.
- v) Write a recursive function to find the sum of series.

WEEK 13:

Objective: Explore the basic difference between normal and pointer variables, Arithmetic operations using pointers and passing variables to functions using pointers

Suggested Experiments/Activities:

Tutorial 13: Call by reference, dangling pointers

- Lab 13: Simple functions using Call by reference, Dangling pointers.
 - i) Write a C program to swap two numbers using call by reference.
 - ii) Demonstrate Dangling pointer problem using a C program.
 - iii) Write a C program to copy one string into another using pointer.
 - iv) Write a C program to find no of lowercase, uppercase, digits and other characters using pointers.

WEEK14:

Objective: To understand data files and file handling with various file I/O functions. Explore the differences between text and binary files.

Suggested Experiments/Activities:

Tutorial 14: File handling

Lab 14: File operations

- i) Write a C program to write and read text into a file.
- ii) Write a C program to write and read text into a binary file using fread() and fwrite()
- iii) Copy the contents of one file to another file.
- iv) Write a C program to merge two files into the third file using command-line arguments.
- v) Find no. of lines, words and characters in a file
- vi) Write a C program to print last n characters of a given file.

Textbooks:

- 1. Ajay Mittal, Programming in C: A practical approach, Pearson.
- 2. Byron Gottfried, Schaum' s Outline of Programming with C, McGraw Hill

Reference Books:

- 1. Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Prentice-Hall of India
- 2. C Programming, A Problem-Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE

L	Т	Р	C
0	0	3	1.5

ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP (Common to All branches of Engineering)

Course Objectives:

To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations.

Course Outcomes:

CO1: Understand the Electrical circuit design concept; measurement of resistance, power, power factor; concept of wiring and operation of Electrical Machines and Transformer.

CO2: Apply the theoretical concepts and operating principles to derive mathematical models for circuits, Electrical machines and measuring instruments; calculations for the measurement of resistance, power and power factor.

CO3: Apply the theoretical concepts to obtain calculations for the measurement of resistance, power and power factor.

CO4: Analyse various characteristics of electrical circuits, electrical machines and measuring instruments.

CO5: Design suitable circuits and methodologies for the measurement of various electrical parameters; Household and commercial wiring.

Activities:

- 1. Familiarization of commonly used Electrical & Electronic Workshop Tools: Bread board, Solder, cables, relays, switches, connectors, fuses, Cutter, plier, screwdriver set, wire stripper, flux, knife/blade, soldering iron, de-soldering pump etc.
 - Provide some exercises so that hardware tools and instruments are learned to be used by the students.
- 2. Familiarization of Measuring Instruments like Voltmeters, Ammeters, multimeter, LCR-Q meter, Power Supplies, CRO, DSO, Function Generator, Frequency counter.
 - Provide some exercises so that measuring instruments are learned to be used by the students.
- 3. Components:
 - Familiarization/Identification of components (Resistors, Capacitors, Inductors, Diodes, transistors, IC's etc.) Functionality, type, size, colour coding package, symbol, cost etc.

• Testing of components like Resistor, Capacitor, Diode, Transistor, ICs etc. -Compare values of components like resistors, inductors, capacitors etc with the measured values by using instruments

PART A: ELECTRICAL ENGINEERING LAB

List of experiments:

- 1. Verification of KCL and KVL
- 2. Verification of Superposition theorem
- 3. Measurement of Resistance using Wheat stone bridge
- 4. Magnetization Characteristics of DC shunt Generator
- 5. Measurement of Power and Power factor using Single-phase wattmeter
- 6. Measurement of Earth Resistance using Megger
- 7. Calculation of Electrical Energy for Domestic Premises

Reference Books:

- 1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition
- 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co, 2013
- 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition

Note: Minimum Six Experiments to be performed.

PART B: ELECTRONICS ENGINEERING LAB

Course Objectives:

• To impart knowledge on the principles of digital electronics and fundamentals of electron devices & its applications.

Course Outcomes: At the end of the course, the student will be able to

CO1: Identify & testing of various electronic components.

CO2: Understand the usage of electronic measuring instruments.

CO3: Plot and discuss the characteristics of various electron devices.

CO4: Explain the operation of a digital circuit.

List of Experiments:

- 1. Plot V-I characteristics of PN Junction diode A) Forward bias B) Reverse bias.
- 2. Plot V I characteristics of Zener Diode and its application as voltage Regulator.
- 3. Implementation of half wave and full wave rectifiers

- 4. Plot Input & Output characteristics of BJT in CE and CB configurations
- 5. Frequency response of CE amplifier.
- 6. Simulation of RC coupled amplifier with the design supplied
- 7. Verification of Truth Table of AND, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR gates using ICs.
- 8. Verification of Truth Tables of S-R, J-K& D flip flops using respective ICs.

Tools / Equipment Required: DC Power supplies, Multi meters, DC Ammeters, DC Voltmeters, AC Voltmeters, CROs, all the required active devices.

References:

- 1. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021.
- 2. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009
- 3. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

Note: Minimum Six Experiments to be performed. All the experiments shall be implemented using both Hardware and Software.

L	Т	Р	C
0	0	1	0.5

NSS/NCC/SCOUTS & GUIDES/COMMUNITY SERVICE (Common to All branches of Engineering)

Course Objectives:

The objective of introducing this course is to impart discipline, character, fraternity, teamwork, social consciousness among the students and engaging them in selfless service.

Course Outcomes: After completion of the course the students will be able to

CO1: Understand the importance of discipline, character and service motto.

CO2: Solve some societal issues by applying acquired knowledge, facts, and techniques.

CO3: Explore human relationships by analyzing social problems.

CO4: Determine to extend their help for the fellow beings and downtrodden people.

CO5: Develop leadership skills and civic responsibilities.

UNIT I Orientation

General Orientation on NSS/NCC/ Scouts & Guides/Community Service activities, career guidance.

Activities:

- i) Conducting –ice breaking sessions-expectations from the course-knowing personal talents and skills
- ii) Conducting orientations programs for the students –future plans-activities-releasing road map etc.
- iii) Displaying success stories-motivational biopics- award winning movies on societal issues etc.
- iv) Conducting talent show in singing patriotic songs-paintings- any other contribution.

UNIT II Nature & Care

Activities:

- i) Best out of waste competition.
- ii) Poster and signs making competition to spread environmental awareness.
- iii) Recycling and environmental pollution article writing competition.
- iv) Organising Zero-waste day.
- v) Digital Environmental awareness activity via various social media platforms.
- vi) Virtual demonstration of different eco-friendly approaches for sustainable living.
- vii) Write a summary on any book related to environmental issues.

UNIT III Community Service

Activities:

i) Conducting One Day Special Camp in a village contacting village-area leaders- Survey in the village, identification of problems- helping them to solve via media- authorities-experts-etc.

- ii) Conducting awareness programs on Health-related issues such as General Health, Mental health, Spiritual Health, HIV/AIDS,
- iii) Conducting consumer Awareness. Explaining various legal provisions etc.
- iv) Women Empowerment Programmes- Sexual Abuse, Adolescent Health and Population Education.
- v) Any other programmes in collaboration with local charities, NGOs etc.

Reference Books:

- 1. Nirmalya Kumar Sinha & Surajit Majumder, *A Text Book of National Service Scheme* Vol; I, Vidya Kutir Publication, 2021 (ISBN 978-81-952368-8-6)
- 2. *Red Book National Cadet Corps –* Standing Instructions Vol I & II, Directorate General of NCC, Ministry of Defence, New Delhi
- 3. Davis M. L. and Cornwell D. A., -Introduction to Environmental Engineering^{II}, McGraw Hill, New York 4/e 2008
- 4. Masters G. M., Joseph K. and Nagendran R. –Introduction to Environmental Engineering and Sciencel, Pearson Education, New Delhi. 2/e 2007
- 5. Ram Ahuja. Social Problems in India, Rawat Publications, New Delhi.

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities.
- 2. Institutes are required to provide instructor to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting viva voce on the subject.

*** *** ***

L	Т	Р	C
3	0	0	3

DIFFERENTIAL EQUATIONS AND VECTOR CALCULUS (Common to All Branches of Engineering)

Course Objectives:

- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To furnish the learners with basic concepts and techniques at plus two level to lead them in to advanced level by handling various real-world applications.

Course Outcomes:

At the end of the course, the student will be able to:

- solve the differential equations related to various engineering fields.
- model engineering problems as higher order differential equations and solve analytically.
- identify solution methods for partial differential equations that model physical processes.
- interpret the physical meaning of different operators such as gradient, curl and divergence.
- estimate the work done against a field, circulation and flux using vector calculus.

UNIT- I : Differential equations of first order and first degree

Linear differential equations – Bernoulli's equations- Exact equations and equations reducible to exact form. Applications: Newton's Law of cooling – Law of natural growth and decay- Electrical circuits

UNIT – II : Linear differential equations of higher order (Constant Coefficients)

Definitions, homogenous and non-homogenous, complimentary function, general particular integral, Wronskean, method of variation of parameters. Simultaneous linear equations, Applications to L-C-R Circuit problems and Simple Harmonic motion.

UNIT – III : Partial Differential Equations

Introduction and formation of Partial Differential Equations by elimination of arbitrary constants and arbitrary functions, solutions of first order linear equations using Lagrange's method. Homogeneous Linear Partial differential equations with constant coefficients.

UNIT - IV : Vector differentiation

Scalar and vector point functions, vector operator del, del applies to scalar point functions-Gradient, del applied to vector point functions - Divergence and Curl, vector identities

UNIT –V : Vector integration

Line integral- circulation- work done, surface integral-flux, Green's theorem in the plane (without proof), Stoke's theorem (without proof), volume integral, Divergence theorem (without proof) and applications of these theorems.

Textbooks:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10/e, John Wiley & Sons, 2018.
- 2. B.S.Grewal, HigherEngineeringMathematics, 44/e, Khanna publishers, 2017.

Reference Books:

- 1. Dennis G.Zill and Warren S.Wright, Advanced Engineering Mathematics, Jones and Bartlett, 2018.
- 2. Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 3. George B. Thomas, Maurice D. Weir and Joel Hass, Thomas Calculus, 14/e, Pearson Publishers, 2018.
- 4. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, 5/e, Alpha Science International Ltd., 2021 (9th reprint).
- 5. B.V. Ramana, Higher Engineering Mathematics, McGraw Hill Education, 2017

L	Т	P	C
3	0	0	3

I Year-II Semester

ENGINEERING PHYSICS

(Common for all branches of Engineering)

Course Objectives:

To bridge the gap between the Physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors.

Course Outcomes:

CO1: Analyze the intensity variation of light due to polarization, interference and diffraction.

CO2: Familiarize with the basics of crystals and their structures.

CO3: Explain fundamentals of quantum mechanics and apply it to one dimensional motion of particles.

CO4: Summarize various types of polarization of dielectrics and classify the magnetic materials.

CO5: Explain the basic concepts of Quantum Mechanics and the band theory of solids.

CO6: Identify the type of semiconductor using Hall effect.

UNIT I Wave Optics

Interference: Introduction - Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colours in thin films- Newton's Rings, Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffractions - Fraunhofer diffraction due to single slit, double slit & N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating (Qualitative). Polarization: Introduction -Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

UNIT II Crystallography and X-ray diffraction

Crystallography: Space lattice, Basis, Unit Cell and lattice parameters – Bravais Lattices – crystal systems (3D) – coordination number - packing fraction of SC, BCC & FCC - Miller indices – separation between successive (hkl) planes.

X-ray diffraction: Bragg's law - X-ray Diffractometer – crystal structure determination by Laue's and powder methods

UNIT III Dielectric and Magnetic Materials

Dielectric Materials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility, Dielectric constant and Displacement Vector – Relation between the electric vectors - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field - Clausius- Mossotti equation - complex dielectric constant – Frequency dependence of polarization – dielectric loss

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability – Atomic origin of magnetism - Classification of magnetic materials: Dia, para, Ferro, anti-ferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials.

UNIT IV Quantum Mechanics and Free electron Theory

Quantum Mechanics: Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations– Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory – electrical conductivity based on quantum free electron theory - Fermi-Dirac distribution - Density of states - Fermi energy

UNIT V Semiconductors

Semiconductors: Formation of energy bands – classification of crystalline solids - Intrinsic semiconductors: Density of charge carriers – Electrical conductivity – Fermi level – Extrinsic semiconductors: density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation – Hall effect and its applications.

Textbooks:

- 1. A Text book of Engineering Physics, M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy, S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics D.K.Bhattacharya and Poonam Tandon, Oxford press (2015)

Reference Books:

- 1. Engineering Physics B.K. Pandey and S. Chaturvedi, Cengage Learning 2021.
- 2. Engineering Physics Shatendra Sharma, Jyotsna Sharma, Pearson Education, 2018.
- 3. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, University Press. 2010
- 4. Engineering Physics M.R. Srinivasan, New Age international publishers (2009).

Web Resources: https://www.loc.gov/rr/scitech/selected-internet/physics.html

L	Т	P	C
2	0	0	2

I Year-II Semester

COMMUNICATIVE ENGLISH

(Common to All Branches of Engineering)

Course Objectives:

The main objective of introducing this course, *Communicative English*, is to facilitate using Listening, Reading, Speaking and Writing skills effectively by the students. It should result in their better comprehending abilities, oral presentations, reporting useful information and with enhanced knowledge of grammatical structures and vocabulary. This course helps the students in using speaking and writing (productive) skills more efficiently and to make them industry-ready

Course Outcomes

- **By the end of the course the students will have** Learned how to understand the context, topic, and specific information from social or transactional dialogues.
- Remedially learn applying grammatical structures to formulate sentence sand use appropriate words and correct word forms.
- Using discourse markers to speak clearly on a specific topic in formal as well as informal discussions.(not required)
- Improved communicative competence in formal and informal contexts and for social and academic purposes.
- Critically comprehending and appreciating ading /listening texts and to write summaries based on global comprehension of these texts.
- Writing coherent paragraphs essays, letters/e-mails and resume.

Instructions:

- 1. The reading texts can be given as podcasts to the students so that their listening skills can be enhanced
- 2. While listening and reading to the text can be given as homework, the classwork for the students can be to discuss and critically evaluate the texts based on the context, purpose or writing the text and understanding it from the author's as well as reader's point of view.
- 3. Reading as habit for both academic and non-academic (pleasure) purposes has to be inculcated in the students. So training has to be given in intensive and extensive reading strategies.
- 4. Writing for both academic (assignments, examinations, reports, e-mails/letters etc)
- 5. The writing tasks given in the class are to be self and peer evaluated by the students before they are finally graded by the faculty.
- Note: Please note that the texts given here are just contexts for teaching various language skills and sub skills. The students' ability to use language cannot be confined to comprehending or using the language related to the given texts (textbooks). The given texts can be used only for practice.
- 6. All the activities to develop language skills have to be integrated and interconnected, within each unit and across the units.

7. Use as many supplementary materials as possible in various modes (Audio, visual and printed versions) in the classroom so that the students get multimode input and will how to use language skills in the absence of the teacher.

UNIT I

Lesson: HUMAN VALUES: A Power of a Plate of Rice by Ifeoma Okoye (Short Story)

- **Listening:** Identifying the topic, the context and specific pieces of information by listening to short audio texts and answering a series of questions.
- **Speaking:** Asking and answering general questions on familiar topics such as home, family, work, studies and interests; introducing oneself and others.
- **Reading:** Skimming to get the main idea of a text; scanning to look for specific pieces of information.
- Writing: Mechanics of Writing-Capitalization, Spellings, Punctuation-Parts of Sentences.(That has to be part of the bridge course- 2 weeks before the actual academic programme starts)
- Grammar: Parts of Speech, Basic Sentence Structures-forming questions
- Vocabulary: Synonyms, Antonyms, Affixes (Prefixes/Suffixes), Root words.

UNITII

Lesson: NATURE: Night of the Scorpion by Nissim Ezekiel (Indian and contemporary)

Listening:	Answering a series of questions about main ideas and supporting ideas after listening to audio texts.
Speaking: talks.	Discussion in pairs/small groups on specific topics followed by short structure
Reading:	Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.
Writing:	Structure of a paragraph - Paragraph writing (specific topics)
Grammar: Vocabulary:	Cohesive devices -linkers, use of articles and zero article prepositions. Homonyms, Homophones, Homographs.

UNITIII Lesson: BIOGRAPHY Steve Jobs

Listening:	Listening for global comprehension and summarizing what is listened.
Speaking:	Discussing specific topics in pairs or small groups and reporting whatis
	discussed
Reading:	Readingatextindetailbymakingbasicinferences-recognizingandinterpretingspecific
	contextclues;strategies touse textclues for comprehension.
Writing:	Summarizing, Note-making, paraphrasing
Grammar:	Verbs - tenses;subject-verbagreement; Compound words, Collocations
Vocabulary:	Compound words, Collocations

UNIT IV

Lesson: INSPIRATION: The Toys of Peace by Saki

- Listening: Making predictions while listening to conversations/ transactional dialogues without video; listening with video.
- **Speaking:** Role plays for practice of conversational English in academic contexts (formal and informal) asking for and giving information/directions.
- **Reading:** Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicate processes or display complicated data.
- Writing: Letter Writing :Official Letters, Resumes
- Grammar: Reporting verbs, Direct & Indirect speech, Active& Passive Voice
- Vocabulary: Words often confused, Jargons

UNIT V

Lesson: MOTIVATION: The Power of Intrapersonal Communication (An Essay)

Listening:	Identifying key terms, understanding concepts and answering a series of relevant
	questions that test comprehension.

Reading: Reading comprehension.

Writing: Writings structured essays on specific topics.

Grammar: Editing short texts –identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject-verb agreement)

Vocabulary: Technical Jargons

Textbooks:

- 1. Pathfinder: Communicative English for Undergraduate Students, 1stEdition,Orient BlackSwan, 2023 (Units 1,2 & 3)
- 2. Empowering English by Cengage Publications, 2023 (Units 4 & 5)

Suggestion: Instead of giving the syllabus in the form of textbooks it would be better toprocure the soft copies of individual texts (stories or poems or biographies and non-fiction texts) by the university and make them available on the university website for registered students to access and download

Reference Books:

- 1. Dubey, Sham Ji & Co. English for Engineers, Vikas Publishers, 2020
- 2. Bailey, Stephen. Academic writing: A Handbook for International Students. Routledge, 2014.
- 3. Murphy, Raymond. English Grammar in Use, Fourth Edition, Cambridge University Press, 2019.
- 4. Lewis, Norman. Word Power Made Easy- The Complete Handbook for Building a Superior Vocabulary. Anchor, 2014.

Web Resources:

GRAMMAR:

- 1. www.bbc.co.uk/learningenglish
- 2. https://dictionary.cambridge.org/grammar/british-grammar/
- 3. <u>www.eslpod.com/index.html</u>
- 4. <u>https://www.learngrammar.net/</u>

- 5. https://english4today.com/english-grammar-online-with-quizzes/
- 6. https://www.talkenglish.com/grammar/grammar.aspx

VOCABULARY

- 1. <u>https://www.youtube.com/c/DailyVideoVocabulary/videos</u>
- 2. https://www.youtube.com/channel/UC4cmBAit8i NJZE8qK8sfpA

L	Т	Р	C
3	0	0	3

I Year-II Semester

BASIC CIVIL & MECHANICAL ENGINEERING (Common to All branches of Engineering)

Course Objectives:

- Get familiarized with the scope and importance of Civil Engineering sub-divisions.
- Introduce the preliminary concepts of surveying.
- Acquire preliminary knowledge on Transportation and its importance in nation's economy.
- Get familiarized with the importance of quality, conveyance and storage of water.
- Introduction to basic civil engineering materials and construction techniques.

Course Outcomes: On completion of the course, the student should be able to:

- CO1: Understand various sub-divisions of Civil Engineering and to appreciate their role in ensuring better society.
- CO2: Know the concepts of surveying and to understand the measurement of distances, angles and levels through surveying.
- CO3: Realize the importance of Transportation in nation's economy and the engineering measures related to Transportation.
- CO4: Understand the importance of Water Storage and Conveyance Structures so that the social responsibilities of water conservation will be appreciated.
- CO5: Understand the basic characteristics of Civil Engineering Materials and attain knowledge on prefabricated technology.

UNIT I

Basics of Civil Engineering: Role of Civil Engineers in Society- Various Disciplines of Civil Engineering- Structural Engineering- Geo-technical Engineering- Transportation Engineering - Hydraulics and Water Resources Engineering - Environmental Engineering-Scope of each discipline - Building Construction and Planning- Construction Materials-Cement - Aggregate - Bricks- Cement concrete- Steel. Introduction to Prefabricated construction Techniques.

UNIT II

Surveying: Objectives of Surveying- Horizontal Measurements- Angular Measurements-Introduction to Bearings Levelling instruments used for levelling -Simple problems on levelling and bearings-Contour mapping.

UNIT III

Transportation Engineering Importance of Transportation in Nation's economic development- Types of Highway Pavements- Flexible Pavements and Rigid Pavements - Simple Differences. Basics of Harbour, Tunnel, Airport, and Railway Engineering

Water Resources and Environmental Engineering: Introduction, Sources of water- Quality of water- Specifications- Introduction to Hydrology–Rainwater Harvesting-Water Storage and

Conveyance Structures (Simple introduction to Dams and Reservoirs).

Textbooks:

- 1. Basic Civil Engineering, M.S.Palanisamy, , Tata Mcgraw Hill publications (India) Pvt. Ltd. Fourth Edition.
- 2. Introduction to Civil Engineering, S.S. Bhavikatti, New Age International Publishers. 2022. First Edition.
- 3. Basic Civil Engineering, Satheesh Gopi, Pearson Publications, 2009, First Edition.

Reference Books:

- 1. Surveying, Vol- I and Vol-II, S.K. Duggal, Tata McGraw Hill Publishers 2019. Fifth Edition.
- 2. Hydrology and Water Resources Engineering, Santosh Kumar Garg, Khanna Publishers, Delhi. 2016
- 3. Irrigation Engineering and Hydraulic Structures Santosh Kumar Garg, Khanna Publishers, Delhi 2023. 38th Edition.
- 4. Highway Engineering, S.K.Khanna, C.E.G. Justo and Veeraraghavan, Nemchand and Brothers Publications 2019. 10th Edition.
- 5. Indian Standard DRINKING WATER SPECIFICATION IS 10500-2012.

PART B: BASIC MECHANICAL ENGINEERING

Course Objectives: The students after completing the course are expected to

- Get familiarized with the scope and importance of Mechanical Engineering in different sectors and industries.
- Explain different engineering materials and different manufacturing processes.
- Provide an overview of different thermal and mechanical transmission systems and introduce basics of robotics and its applications.

Course Outcomes: On completion of the course, the student should be able to

CO1: Understand the different manufacturing processes.

CO2: Explain the basics of thermal engineering and its applications.

CO3: Describe the working of different mechanical power transmission systems and power plants.

CO4: Describe the basics of robotics and its applications.

UNIT I

Introduction to Mechanical Engineering: Role of Mechanical Engineering in Industries and Society- Technologies in different sectors such as Energy, Manufacturing, Automotive, Aerospace, and Marine sectors.

Engineering Materials - Metals-Ferrous and Non-ferrous, Ceramics, Composites, Smart materials.

UNIT II

Manufacturing Processes: Principles of Casting, Forming, joining processes, Machining, Introduction to CNC machines, 3D printing, and Smart manufacturing. Thermal Engineering – working principle of Boilers, Otto cycle, Diesel cycle, Refrigeration and air-conditioning cycles, IC engines, 2-Stroke and 4-Stroke engines, SI/CI Engines, Components of Electric and Hybrid Vehicles.

UNIT III

Power plants – working principle of Steam, Diesel, Hydro, Nuclear power plants. **Mechanical Power Transmission -** Belt Drives, Chain, Rope drives, Gear Drives and theirapplications.

Introduction to Robotics - Joints & links, configurations, and applications of robotics.

(Note: The subject covers only the basic principles of Civil and Mechanical Engineeringsystems. The evaluation shall be intended to test only the fundamentals of the subject)

Textbooks:

- 1. Internal Combustion Engines by V.Ganesan, By Tata McGraw Hill publications (India)Pvt. Ltd.
- 2. A Tear book of Theory of Machines by S.S. Rattan, Tata McGraw Hill Publications, (India) Pvt. Ltd.
- 3. An introduction to Mechanical Engg by Jonathan Wicker and Kemper Lewis, Cengagelearning India Pvt. Ltd.

Reference Books:

- 1. Appuu Kuttan KK, Robotics, I.K. International Publishing House Pvt. Ltd. Volume-I
- 2. 3D printing & Additive Manufacturing Technology- L. Jyothish Kumar, Pulak MPandey, Springer publications
- 3. Thermal Engineering by Mahesh M Rathore Tata McGraw Hill publications (India) Pvt.Ltd.
- 4. G. Shanmugam and M.S.Palanisamy, Basic Civil and the Mechanical Engineering, TataMcGraw Hill publications (India) Pvt. Ltd.

I Year-II Semester

L	Т	Р	C
3	0	0	3

ENGINEERING MECHANICS

Course Objectives:

- To get familiarized with different types of force systems.
- To draw accurate free body diagrams representing forces and moments acting on a bodyto analyze the equilibrium of system of forces.
- To teach the basic principles of center of gravity, centroid and moment of inertia anddetermine them for different simple and composite bodies.
- To apply the Work-Energy method to particle motion.
- To understand the kinematics and kinetics of translational and rotational motion of rigidbodies.

Course Outcomes: On Completion of the course, the student should be able to **CO1:** Understand the fundamental concepts in mechanics and determine the frictional forcesfor bodies in contact.

CO2: Analyze different force systems such as concurrent, coplanar and spatial systems and calculate their resultant forces and moments.

CO3: Calculate the centroids, center of gravity and moment of inertia of different geometricalshapes.

CO4: Apply the principles of work-energy and impulse-momentum to solve the problems of rectilinear and curvilinear motion of a particle.

CO5: Solve the problems involving the translational and rotational motion of rigid bodies.

UNIT I

Introduction to Engineering Mechanics– Basic Concepts. Scope and Applications **Systems of Forces:** Coplanar Concurrent Forces– Components in Space–Resultant– Momentof Force and its Application –Couples and Resultant of Force Systems. **Friction:** Introduction, limiting friction and impending motion, Coulomb'slaws of dryfriction, coefficient of friction, Cone of Static friction.

UNIT II

Equilibrium of Systems of Forces: Free Body Diagrams, Lami's Theorm, Equations of Equilibrium of Coplanar Systems, Graphical method for the equilibrium, Triangle law of forces, converse of the law of polygon of forces condition of equilibrium, Equations of Equilibrium forSpatial System of forces, Numerical examples on spatial system of forces using vector approach, Analysis of plane trusses.

Principle of virtual work with simple examples

UNIT III

Centroid: Centroids of simple figures (from basic principles)–Centroids of Composite Figures. **Centre of Gravity:** Centre of gravity of simple body (from basic principles), Centre of gravityof composite bodies, Pappus theorems.

Area Moments of Inertia: Definition– Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. Mass Moment of Inertia: Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, Mass Moment of Inertia of composite bodies.

UNIT IV

Rectilinear and Curvilinear motion of a particle: Kinematics and Kinetics –D'Alembert's Principle - Work Energy method and applications to particle motion-Impulse Momentum method.

UNIT V

Rigid body Motion: Kinematics and Kinetics of translation, Rotation about fixed axis and plane motion, Work Energy method and Impulse Momentum method.

Textbooks:

- 1. Engineering Mechanics, S. Timoshenko, D. H. Young, J.V. Rao, S. Pati., , McGraw Hill Education 2017. 5th Edition.
- **2.** Engineering Mechanics, P.C.Dumir- S.Sengupta and Srinivas V veeravalli, University press. 2020. First Edition.
- **3.** A Textbook of Engineering Mechanics, S.S Bhavikatti. New age international publications 2018. 4th Edition.

Reference Books:

- 1. Engineering Mechanics, Statics and Dynamics, Rogers and M A. Nelson., McGraw Hill Education. 2017. First Edition.
- 2. Engineering Mechanics, Statics and Dynamics, I.H. Shames., PHI, 2002. 4th Edition.
- Engineering Mechanics, Volume-I: Statics, Volume-II: Dynamics, J. L. Meriam and L. G. Kraige., John Wiley, 2008. 6th Edition.
- 4. Introduction to Statics and Dynamics, Basudev Battachatia, Oxford University Press, 2014. Second Edition
- 5. Engineering Mechanics: Statics and Dynamics, Hibbeler R.C., Pearson Education, Inc., New Delhi, 2022, 14th Edition

I Year-II Semester

L	Т	Р	С
0	0	2	1

COMMUNICATIVE ENGLISH LAB

(Common to All Branches of Engineering)

Course Objectives:

The main objective of introducing this course, Communicative English Laboratory, is to expose the students to a variety of self-instructional, learner friendly modes of language learning. The students will get trained in basic communication skills and also make them ready to face job interviews.

Course Outcomes:

CO1: Understand the different aspects of the English language proficiency with emphasis on LSRW skills.

CO2: Apply communication skills through various language learning activities.

CO3: Analyze the English speech sounds, stress, rhythm, intonation and syllable division for better listening and speaking comprehension.

CO4: Evaluate and exhibit professionalism in participating in debates and group discussions. CO5: Create effective Course Objectives:

List of Topics:

- 1. Vowels & Consonants
- 2. Neutralization/Accent Rules
- 3. Communication Skills & JAM
- 4. Role Play or Conversational Practice
- 5. E-mail Writing
- 6. Resume Writing, Cover letter, SOP
- 7. Group Discussions-methods & practice
- 8. Debates Methods & Practice
- 9. PPT Presentations/ Poster Presentation
- 10. Interviews Skills

Suggested Software:

- Walden Infotech
- Young India Films

Reference Books:

- 1. Raman Meenakshi, Sangeeta-Sharma. Technical Communication. Oxford Press.2018.
- 2. Taylor Grant: English Conversation Practice, Tata McGraw-Hill Education India, 2016
- 3. Hewing's, Martin. Cambridge Academic English (B2). CUP, 2012.
- 4. J. Sethi & P.V. Dhamija. A Course in Phonetics and Spoken English, (2nd Ed), Kindle, 2013

Web Resources:

Spoken English:

- 1. www.esl-lab.com
- 2. www.englishmedialab.com
- 3. www.englishinteractive.net
- 4. https://www.britishcouncil.in/english/online
- 5. http://www.letstalkpodcast.com/
- 6. <u>https://www.youtube.com/c/mmmEnglish_Emma/featured</u>
- 7. https://www.youtube.com/c/ArnelsEverydayEnglish/featured
- 8. https://www.youtube.com/c/engvidAdam/featured
- 9. https://www.youtube.com/c/EnglishClass101/featured
- 10. https://www.youtube.com/c/SpeakEnglishWithTiffani/playlists
- 11. https://www.youtube.com/channel/UCV1h_cBE0Drdx19qkTM0WNw

Voice & Accent:

- 1. <u>https://www.youtube.com/user/letstalkaccent/videos</u>
- 2. <u>https://www.youtube.com/c/EngLanguageClub/featured</u>
- 3. <u>https://www.youtube.com/channel/UC_OskgZBoS4dAnVUgJVexc</u>
- 4. https://www.youtube.com/channel/UCNfm92h83W2i2ijc5Xwp_IA

L	Т	P	C
0	0	2	1

ENGINEERING PHYSICS LAB (Common to All Branches of Engineering)

Course Objectives:

To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments.

Course Outcomes: The students will be able to

CO1: Operate optical instruments like travelling microscope and spectrometer.

CO2: Estimate the wavelengths of different colours using diffraction grating.

CO3: Plot the intensity of the magnetic field of circular coil carrying current with distance.

CO4: Evaluate dielectric constant and magnetic susceptibility for dielectric and magnetic materials respectively.

CO5: Calculate the band gap of a given semiconductor.

CO6: Identify the type of semiconductor using Hall effect.

List of Experiments:

- 1. Determination of radius of curvature of a given Plano-convex lens by Newton's rings.
- 2. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 3. Verification of Brewster's law
- 4. Determination of dielectric constant using charging and discharging method.
- 5. Study the variation of B versus H by magnetizing the magnetic material (B-H curve).
- 6. Determination of wavelength of Laser light using diffraction grating.
- 7. Estimation of Planck's constant using photoelectric effect.
- 8. Determination of the resistivity of semiconductors by four probe methods.
- 9. Determination of energy gap of a semiconductor using p-n junction diode.
- 10. Magnetic field along the axis of a current carrying circular coil by Stewart Gee's Method.
- 11. Determination of Hall voltage and Hall coefficient of a given semiconductor using Hall effect.
- 12. Determination of temperature coefficients of a thermistor.
- 13. Determination of acceleration due to gravity and radius of Gyration by using a compound pendulum.
- 14. Determination of magnetic susceptibility by Kundt's tube method.
- 15. Determination of rigidity modulus of the material of the given wire using Torsional pendulum.
- 16. Sonometer: Verification of laws of stretched string.
- 17. Determination of young's modulus for the given material of wooden scale by nonuniform bending (or double cantilever) method.
- 18. Determination of Frequency of electrically maintained tuning fork by Melde's

experiment.

Note: Any TEN of the listed experiments are to be conducted. Out of which any TWO experiments may be conducted in virtual mode.

References:

• A Textbook of Practical Physics - S. Balasubramanian, M.N. Srinivasan, S. Chand Publishers, 2017.

Web Resources

• <u>www.vlab.co.in</u>

https://phet.colorado.edu/en/simulations/filter?subjects=physics&type=html,prototype

I Year-II Semester

L	Т	P	C
0	0	2	1

IT WORKSHOP

(Common to all branches of Engineering)

Course Objectives:

- To introduce the internal parts of a computer, peripherals, I/O ports, connecting cables
- To demonstrate configuring the system as Dual boot both Windows and other Operating Systems Viz. Linux, BOSS
- To teach basic command line interface commands on Linux.
- To teach the usage of Internet for productivity and self-paced life-long learning
- To introduce Compression, Multimedia and Antivirus tools and Office Tools such as Word processors, Spread sheets and Presentation tools.

Course Outcomes:

CO1: Perform Hardware troubleshooting.

CO2: Understand Hardware components and inter dependencies.

CO3: Safeguard computer systems from viruses/worms.

CO4: Document/ Presentation preparation.

CO5: Perform calculations using spreadsheets.

PC Hardware & Software Installation

Task 1: Identify the peripherals of a computer, components in a CPU and its functions. Draw the block diagram of the CPU along with the configuration of each peripheral and submit to your instructor.

Task 2: Every student should disassemble and assemble the PC back to working condition. Lab instructors should verify the work and follow it up with a Viva. Also students need to go through the video which shows the process of assembling a PC. A video would be given as part of the course content.

Task 3: Every student should individually install MS windows on the personal computer. Lab instructor should verify the installation and follow it up with a Viva.

Task 4: Every student should install Linux on the computer. This computer should have windows installed. The system should be configured as dual boot (VMWare) with both Windows and Linux. Lab instructors should verify the installation and follow it up with a Viva

Task 5: Every student should install BOSS on the computer. The system should be configured as dual boot (VMWare) with both Windows and BOSS. Lab instructors should verify the installation and follow it up with a Viva

Internet & World Wide Web

Task1: Orientation & Connectivity Boot Camp: Students should get connected to their Local Area Network and access the Internet. In the process they configure the TCP/IP setting. Finally students should demonstrate, to the instructor, how to access the websites and email. If there is

no internet connectivity preparations need to be made by the instructors to simulate the WWW on the LAN.

Task 2: Web Browsers, Surfing the Web: Students customize their web browsers with the LAN proxy settings, bookmarks, search toolbars and pop up blockers. Also, plug-ins like Macromedia Flash and JRE for applets should be configured.

Task 3: Search Engines & Netiquette: Students should know what search engines are and how to use the search engines. A few topics would be given to the students for which they need to search on Google. This should be demonstrated to the instructors by the student.

Task 4: Cyber Hygiene: Students would be exposed to the various threats on the internet and would be asked to configure their computer to be safe on the internet. They need to customize their browsers to block pop ups, block active x downloads to avoid viruses and/or worms.

LaTeX and WORD

Task 1 – Word Orientation: The mentor needs to give an overview of La TeX and Microsoft (MS) office or equivalent (FOSS) tool word: Importance of La TeX and MS office or equivalent (FOSS) tool Word as word Processors, Details of the four tasks and features that would be covered in each, Using La TeXand word – Accessing, overview of toolbars, saving files, Using help and resources, rulers, format painter in word.

Task 2: Using La TeX and Word to create a project certificate. Features to be covered:-Formatting Fonts in word, Drop Cap in word, Applying Text effects, Using Character Spacing, Borders and Colors, Inserting Header and Footer, Using Date and Time option in both La TeX and Word.

Task 3: Creating project abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes.

Task 4: Creating a Newsletter: Features to be covered:- Table of Content, Newspaper columns, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes, Paragraphs and Mail Merge in word.

EXCEL

Excel Orientation: The mentor needs to tell the importance of MS office or equivalent (FOSS) tool Excel as a Spreadsheet tool, give the details of the four tasks and features that would be covered in each. Using Excel – Accessing, overview of toolbars, saving excel files, Using help and resources.

Task 1: Creating a Scheduler - Features to be covered: Gridlines, Format Cells, Summation, auto fill, Formatting Text

Task 2: Calculating GPA -. Features to be covered:- Cell Referencing, Formulae in excel – average, std. deviation, Charts, Renaming and Inserting worksheets, Hyper linking, Count function,

LOOKUP/VLOOKUP

Task 3: Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting

POWER POINT

Task 1: Students will be working on basic power point utilities and tools which help them create basic power point presentations. PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows in PowerPoint.

Task 2: Interactive presentations - Hyperlinks, Inserting –Images, Clip Art, Audio, Video, Objects, Tables and Charts.

Task 3: Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), and Inserting – Background, textures, Design Templates, Hidden slides.

AI TOOLS – ChatGPT

Task 1: Prompt Engineering: Experiment with different types of prompts to see how the model responds. Try asking questions, starting conversations, or even providing incomplete sentences to see how the model completes them.

• Ex: Prompt: "You are a knowledgeable AI. Please answer the following question: What is the capital of France?"

Task 2: Creative Writing: Use the model as a writing assistant. Provide the beginning of a story or a description of a scene, and let the model generate the rest of the content. This can be a fun way to brainstorm creative ideas

• Ex: Prompt: "In a world where gravity suddenly stopped working, people started floating upwards. Write a story about how society adapted to this new reality."

Task 3: Language Translation: Experiment with translation tasks by providing a sentence in one language and asking the model to translate it into another language. Compare the output to see how accurate and fluent the translations are.

• Ex:Prompt: "Translate the following English sentence to French: 'Hello, how are you doing today?'"

Reference Books:

- 2. Comdex Information Technology course tool kit, Vikas Gupta, WILEY Dream tech, 2003
- 3. The Complete Computer upgrade and repair book, Cheryl A Schmidt, WILEY Dream tech, 2013, 3rd edition
- 4. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education, 2012, 2nd edition
- 5. PC Hardware A Handbook, Kate J. Chase, PHI (Microsoft)
- 6. LaTeX Companion, Leslie Lamport, PHI/Pearson.
- 7. IT Essentials PC Hardware and Software Companion Guide, David Anfins on and Ken Quamme. CISCO Press, Pearson Education, 3rd edition
- 8. IT Essentials PC Hardware and Software Labs and Study Guide, Patrick Regan– CISCO Press, Pearson Education, 3rd edition

L	Т	P	С
0	0	3	1.5

ENGINEERING WORKSHOP

(Common to All branches of Engineering)

Course Objectives:

To familiarize students with wood working, sheet metal operations, fitting and electrical house wiring skills

Course Outcomes:

CO1: Identify workshop tools and their operational capabilities.

CO2: Practice on manufacturing of components using workshop trades including fitting, carpentry, foundry and welding.

CO3: Apply fitting operations in various applications.

CO4: Apply basic electrical engineering knowledge for House Wiring Practice

SYLLABUS

- 1. **Demonstration**: Safety practices and precautions to be observed in workshop.
- 2. Wood Working: Familiarity with different types of woods and tools used in wood working and make following joints.
 - a) Half Lap joint b) Mortise and Tenon joint c) Corner Dovetail joint or Bridle joint
- Sheet Metal Working: Familiarity with different types of tools used in sheet metal working, Developments of following sheet metal job from GI sheets.
 Tanggad types
 Conjuct formal
- a) Tapered tray
 b) Conical funnel
 c) Elbow pipe
 d) Brazing
 4. Fitting: Familiarity with different types of tools used in fitting and do the following fitting exercises.

a) V-fit b) Dovetail fit c) Semi-circular fit d) Bicycle tire puncture and change of two-wheeler tyre

- 5. **Electrical Wiring**: Familiarity with different types of basic electrical circuits and make the following connections.
 - a) Parallel and series b) Two-way switch c) Godown lighting
 - d) Tube light e) Three phase motor f) Soldering of wires
- 6. **Foundry Trade:** Demonstration and practice on Moulding tools and processes, Preparation of Green Sand Moulds for given Patterns.
- 7. Welding Shop: Demonstration and practice on Arc Welding and Gas welding. Preparation of Lap joint and Butt joint.
- 8. **Plumbing:** Demonstration and practice of Plumbing tools, Preparation of Pipe joints with coupling for same diameter and with reducer for different diameters.

Textbooks:

- 1. Basic Workshop Technology: Manufacturing Process, Felix W.; Independently Published, 2019. Workshop Processes, Practices and Materials; Bruce J. Black, Routledge publishers, 5th Edn. 2015.
- 2. A Course in Workshop Technology Vol I. & II, B.S. Raghuwanshi, Dhanpath Rai & Co., 2015 & 2017.

Reference Books:

- 1. Elements of Workshop Technology, Vol. I by S. K. Hajra Choudhury & Others, Media Promoters and Publishers, Mumbai. 2007, 14th edition
- 2. Workshop Practice by H. S. Bawa, Tata-McGraw Hill, 2004.
- 3. Wiring Estimating, Costing and Contracting; Soni P.M. & Upadhyay P.A.; Atul Prakashan, 2021-22.

I Year-II Semester	L	Т	Р	C
	0	0	3	1.5

ENGINEERING MECHANICS & BUILDING PRACTICES LAB

Course Objectives: The students completing the course are expected to

- Verify the Law of Parallelogram of Forces and Lami's theorem.
- Determine the coefficients of friction of Static and Rolling friction and Centre of gravity of different plane Lamina.
- Understand the layout of a building, concepts of Non-Destructive Testing and different Alternative Materials.

Course Outcomes: On completion of the course, the student should be able to:

CO1: Evaluate the coefficient of friction between two different surfaces and between the inclined plane and the roller.

CO2: Verify Law of Parallelogram of forces and Law of Moment using force polygon and bell crank lever.

CO3: Determine the Centre of gravity different configurations and

CO4: Understand the Quality Testing and Assessment Procedures and principles of Non-Destructive Testing.

CO5: Exposure to safety practices in the construction industry.

Students have to perform any 10 of the following Experiments:

- 1. To study various types of tools used in construction.
- 2. Forces in Pin Jointed Trusses
- 3. Experimental Proof of Lami's Theorem
- 4. Verification of Law of Parallelogram of Forces.
- 5. Determination of Center of Gravity of different shaped Plane Lamina.
- 6. Determination of coefficient of Static and Rolling Friction.
- 7. Verification of Law of Moment using Rotation Disc Apparatus and Bell Crank Lever
- 8. Study of Alternative Materials like M-sand, Fly ash, Sea Sand etc.
- 9. Field-Visit to understand the Quality Testing report.
- 10. Safety Practices in Construction industry
- 11. Demonstration of Non-Destructive Testing using Rebound Hammer & UPV
- 12. Study of Plumbing in buildings.

I Year-II Semester

L	Т	P	С
0	0	1	0.5

HEALTH AND WELLNESS, YOGA AND SPORTS (Common to All branches of Engineering)

Course Objectives:

The main objective of introducing this course is to make the students maintain their mental and physical wellness by balancing emotions in their life. It mainly enhances the essential traits required for the development of the personality.

Course Outcomes: After completion of the course the student will be able to

- CO1: Understand the importance of yoga and sports for Physical fitness and sound health.
- CO2: Demonstrate an understanding of health-related fitness components.
- **CO3:** Compare and contrast various activities that help enhance their health.
- **CO4:** Assess current personal fitness levels.
- **CO5:** Develop Positive Personality

UNIT I

Concept of health and fitness, Nutrition and Balanced diet, basic concept of immunity Relationship between diet and fitness, Globalization and its impact on health, Body Mass Index (BMI) of all age groups.

Activities:

- i) Organizing health awareness programmes in community
- ii) Preparation of health profile
- iii) Preparation of chart for balance diet for all age groups

UNIT II

Concept of yoga, need for and importance of yoga, origin and history of yoga in Indian context, classification of yoga, Physiological effects of Asanas- Pranayama and meditation, stress management and yoga, Mental health and yoga practice.

Activities:

Yoga practices – Asana, Kriya, Mudra, Bandha, Dhyana, Surya Namaskar

UNIT III

Concept of Sports and fitness, importance, fitness components, history of sports, Ancient and Modern Olympics, Asian games and Commonwealth games.

Activities:

i) Participation in one major game and one individual sport viz., Athletics, Volleyball, Basketball, Handball, Football, Badminton, Kabaddi, Kho-kho, Table tennis, Cricket etc.

Practicing general and specific warm up, aerobics

ii) Practicing cardiorespiratory fitness, treadmill, run test, 9 min walk, skipping and running.

Reference Books:

- 1. Gordon Edlin, Eric Golanty. Health and Wellness, 14th Edn. Jones & Bartlett Learning, 2022
- 2. T.K.V.Desikachar. The Heart of Yoga: Developing a Personal Practice
- 3. Archie J.Bahm. Yoga Sutras of Patanjali, Jain Publishing Company, 1993
- 4. Wiseman, John Lofty, SAS Survival Handbook: The Ultimate Guide to Surviving Anywhere Third Edition, William Morrow Paperbacks, 2014
- 5. The Sports Rules Book/ Human Kinetics with Thomas Hanlon. -- 3rd ed. HumanKinetics, Inc.2014

General Guidelines:

- 1. Institutes must assign slots in the Timetable for the activities of Health/Sports/Yoga.
- **2.** Institutes must provide field/facility and offer the minimum of five choices of as manyas Games/Sports.
- 3. Institutes are required to provide sports instructor / yoga teacher to mentor the students.

Evaluation Guidelines:

- Evaluated for a total of 100 marks.
- A student can select 6 activities of his/her choice with a minimum of 01 activity per unit. Each activity shall be evaluated by the concerned teacher for 15 marks, totalling to 90 marks.
- A student shall be evaluated by the concerned teacher for 10 marks by conducting vivavoce on the subject.

II – I Semester

L	Τ	P	C
3	0	0	3

NUMERICAL AND STATISTICAL METHODS

Course Outcomes:

After successful completion of this course, the students should be able to:

- Apply numerical methods to solve algebraic and transcendental equations.
- Derive interpolating polynomials using interpolation formulae.
- Solve differential and integral equations numerically.
- To identify real life problems into Mathematical Models.
- To apply the probability theory and testing of hypothesis in the field of civil engineering Applications.

Pre-requisite: Basic algebraic Equations, Probability, random variables (discrete and continuous) and probability distributions.

UNIT I: Solution of Algebraic & Transcendental Equations

Introduction-Bisection Method-Iterative method, Regula-falsi method and Newton Raphson method System of Algebraic equations: Gauss Elimination, Jacoby and Gauss Siedal method.

UNIT II: Interpolation

Finite differences-Newton's forward and backward interpolation formulae – Lagrange's formulae. Curve fitting: Fitting of straight line, second-degree and Exponential curve by method of least squares.

UNIT III: Solution of Initial value problems to Ordinary differential equations

Numerical solution of Ordinary Differential equations: Solution by Taylor's series-Picard's Method of successive Approximations-Euler's and modified Euler's methods-Runge-Kutta methods (second and fourth order).

UNIT IV: Estimation and Testing of hypothesis, large sample tests

Estimation-parameters, statistics, sampling distribution, point estimation, Formulation of null hypothesis, alternative hypothesis, the critical and acceptance regions, level of significance, two types of errors and power of the test. Large Sample Tests: Test for single proportion, difference of proportions, test for single mean and difference of means. Confidence interval for parameters in one sample and two sample problems

UNIT V: Small sample tests

Student t-distribution (test for single mean, two means and paired t-test), testing of equality of 53 variances (F-test), $\chi 2$ - test for goodness of fit, $\chi 2$ - test for independence of attributes.

Textbooks:

- S S Sastry, Introductory Methods of Numerical Analysis, PHI Learning Private Limited.
- 2. B. S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 2017, 44th Edition
- 3. Miller and Freunds, Probability and Statistics for Engineers, 7/e, Pearson, 2008. India.

Reference Books:

- Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2018, 10th Edition.
- R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Alpha ScienceInternational Ltd., 2021 5th Edition(9th reprint).
- 3. Ronald E. Walpole, Probability and Statistics for Engineers and Scientists, PNIE
- 4. H. K Das, Er. Rajnish Verma, Higher Engineering Mathematics, S. Chand Publications, 2014, Third Edition (Reprint 2021)

Online Learning Resources:

- 1. https://onlinecourses.nptel.ac.in/noc17_ma14/preview
- 2. <u>https://onlinecourses.nptel.ac.in/noc24_ma05/preview</u> <u>http://nptel.ac.in/courses/111105090</u>

	L	Т	P	C	
II – I Semester	3	0	0	3]

UNIVERSAL HUMAN VALUES – UNDERSTANDING HARMONY AND

ETHICAL HUMAN CONDUCT

Course Objectives:

- To help the students appreciate the essential complementary between 'VALUES' and 'SKILLS' to ensure sustained happiness and prosperity which are the core aspirations of all human beings.
- To facilitate the development of a Holistic perspective among students towards life and profession as well as towards happiness and prosperity based on a correct understanding of the Human reality and the rest of existence. Such holistic perspective forms the basis of Universal Human Values and movement towards value-based living in a natural way.
- To highlight plausible implications of such a Holistic understanding in terms of ethical human conduct, trustful and mutually fulfilling human behaviour and mutually enriching interaction with Nature.

Course Outcomes:

- Define the terms like Natural Acceptance, Happiness and Prosperity (L1, L2)
- Identify one's self, and one's surroundings (family, society nature) (L1, L2)
- Apply what they have learnt to their own self in different day-to-day settings in real life (L3)
- Relate human values with human relationship and human society. (L4)
- Justify the need for universal human values and harmonious existence (L5)
- Develop as socially and ecologically responsible engineers (L3, L6)

Course Topics

The course has 28 lectures and 14 tutorials in 5 modules. The lectures and tutorials are of 1-hour duration. Tutorial sessions are to be used to explore and practice what has been proposed during the lecture sessions.

The Teacher's Manual provides the outline for lectures as well as practice sessions. The teacher is expected to present the issues to be discussed as propositions and encourage the students to have a dialogue.

UNIT I

Introduction to Value Education (6 lectures and 3 tutorials for practice session)

Lecture 1: Right Understanding, Relationship and Physical Facility (Holistic Development and the Role of Education)

Lecture 2: Understanding Value Education

Tutorial 1: Practice Session PS1 Sharing about Oneself

Lecture 3: self-exploration as the Process for Value Education

Lecture4: Continuous Happiness and Prosperity - the Basic Human Aspirations

Tutorial 2: Practice Session PS2 Exploring Human Consciousness

Lecture 5: Happiness and Prosperity - Current Scenario

Lecture 6: Method to Fulfill the Basic Human Aspirations

Tutorial 3: Practice Session PS3 Exploring Natural Acceptance

UNIT II

Harmony in the Human Being (6 lectures and 3 tutorials for practice session)

Lecture 7: Understanding Human being as the Co-existence of the self and the body.

Lecture 8: Distinguishing between the Needs of the self and the body

Tutorial 4: Practice Session PS4 Exploring the difference of Needs of self and body.

Lecture 9: The body as an Instrument of the self

Lecture 10: Understanding Harmony in the self

Tutorial 5: Practice Session PS5 Exploring Sources of Imagination in the self

Lecture 11: Harmony of the self with the body

Lecture 12: Programme to ensure self-regulation and Health

Tutorial 6: Practice Session PS6 Exploring Harmony of self with the body

UNIT III

Harmony in the Family and Society (6 lectures and 3 tutorials for practice session)

Lecture 13: Harmony in the Family – the Basic Unit of Human Interaction

Lecture 14: 'Trust' - the Foundational Value in Relationship

Tutorial 7: Practice Session PS7 Exploring the Feeling of Trust

Lecture 15: 'Respect' – as the Right Evaluation

Tutorial 8: Practice Session PS8 Exploring the Feeling of Respect

Lecture 16: Other Feelings, Justice in Human-to-Human Relationship

Lecture 17: Understanding Harmony in the Society

Lecture 18: Vision for the Universal Human Order

Tutorial 9: Practice Session PS9 Exploring Systems to fulfil Human Goal

UNIT IV

Harmony in the Nature/Existence (4 lectures and 2 tutorials for practice session)

Lecture 19: Understanding Harmony in the Nature

Lecture 20: Interconnectedness, self-regulation and Mutual Fulfilment among

the Four Orders of Nature

Tutorial 10: Practice Session PS10 Exploring the Four Orders of Nature

Lecture 21: Realizing Existence as Co-existence at All Levels

Lecture 22: The Holistic Perception of Harmony in Existence

Tutorial 11: Practice Session PS11 Exploring Co-existence in Existence.

UNIT V

Implications of the Holistic Understanding – a Look at Professional Ethics (6 lectures and 3 tutorials for practice session)

Lecture 23: Natural Acceptance of Human Values

Lecture 24: Definitiveness of (Ethical) Human Conduct

Tutorial 12: Practice Session PS12 Exploring Ethical Human Conduct

Lecture 25: A Basis for Humanistic Education, Humanistic Constitution and Universal Human Order

Lecture 26: Competence in Professional Ethics

Tutorial 13: Practice Session PS13 Exploring Humanistic Models in Education

Lecture 27: Holistic Technologies, Production Systems and Management Models-Typical Case Studies

Lecture 28: Strategies for Transition towards Value-based Life and Profession

Tutorial 14: Practice Session PS14 Exploring Steps of Transition towards Universal Human Order

Practice Sessions for

UNIT I – Introduction to Value Education

PS1 Sharing about Oneself

PS2 Exploring Human Consciousness

PS3 Exploring Natural Acceptance

Practice Sessions for UNIT II – Harmony in the Human Being

PS4 Exploring the difference of Needs of self and body

PS5 Exploring Sources of Imagination in the self

PS6 Exploring Harmony of self with the body

Practice Sessions for UNIT III – Harmony in the Family and Society

PS7 Exploring the Feeling of Trust

PS8 Exploring the Feeling of Respect

PS9 Exploring Systems to fulfil Human Goal

Practice Sessions for UNIT IV – Harmony in the Nature (Existence)

PS10 Exploring the Four Orders of Nature

PS11 Exploring Co-existence in Existence

Practice Sessions for UNIT V – Implications of the Holistic Understanding – a Look at Professional Ethics

PS12 Exploring Ethical Human Conduct

PS13 Exploring Humanistic Models in Education

PS14 Exploring Steps of Transition towards Universal Human Order

Readings:

Textbook and Teachers Manual

a. The Textbook

R R Gaur, R Asthana, G P Bagaria, A Foundation Course in Human Values and Professional Ethics, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-47-1

b. The Teacher's Manual

R R Gaur, R Asthana, G P Bagaria, *Teachers' Manual for A Foundation Course in Human Values and Professional Ethics*, 2nd Revised Edition, Excel Books, New Delhi, 2019. ISBN 978-93-87034-53-2

Reference Books

- 1. JeevanVidya: EkParichaya, A Nagaraj, JeevanVidyaPrakashan, Amarkantak, 1999.
- 2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 3. The Story of Stuff (Book).
- 4. The Story of My Experiments with Truth by Mohandas Karamchand Gandhi
- 5. Small is Beautiful E. F Schumacher.
- 6. Slow is Beautiful Cecile Andrews
- 7. Economy of Permanence J C Kumarappa
- 8. Bharat Mein Angreji Raj PanditSunderlal
- 9. Rediscovering India by Dharampal
- 10. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 11. India Wins Freedom Maulana Abdul Kalam Azad
- 12. Vivekananda Romain Rolland (English)
- 13. Gandhi Romain Rolland (English)

Mode of Conduct:

Lecture hours are to be used for interactive discussion, placing the proposals about the topics at hand and motivating students to reflect, explore and verify them.

Tutorial hours are to be used for practice sessions.

While analyzing and discussing the topic, the faculty mentor's role is in pointing to essential elements to help in sorting them out from the surface elements. In other words, help the students explore the important or critical elements.

In the discussions, particularly during practice sessions (tutorials), the mentor encourages the student to connect with one's own self and do self-observation, self-reflection and self-exploration.

Scenarios may be used to initiate discussion. The student is encouraged to take up "ordinary" situations rather than" extra-ordinary" situations. Such observations and their analyses are shared and discussed with other students and faculty mentor, in a group sitting.

Tutorials (experiments or practical) are important for the course. The difference is that the laboratory is everyday life, and practical are how you behave and work in real life. Depending

on the nature of topics, worksheets, home assignment and/or activity are included. The practice sessions (tutorials) would also provide support to a student in performing actions commensurate to his/her beliefs. It is intended that this would lead to development of commitment, namely behaving and working based on basic human values.

It is recommended that this content be placed before the student as it is, in the form of a basic foundation course, without including anything else or excluding any part of this content. Additional content may be offered in separate, higher courses. This course is to be taught by faculty from every teaching department, not exclusively by any one department.

Teacher preparation with a minimum exposure to at least one 8-day Faculty Development Program on Universal Human Values is deemed essential.

Online Resources:

- 1. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%201-</u> <u>Introduction%20to%20Value%20Education.pdf</u>
- 2. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%202-</u> <u>Harmony%20in%20the%20Human%20Being.pdf</u>
- 3. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%203-</u> <u>Harmony%20in%20the%20Family.pdf</u>
- 4. <u>https://fdp-si.aicte-india.org/UHV%201%20Teaching%20Material/D3-</u> S2%20Respect%20July%2023.pdf
- 5. <u>https://fdp-si.aicte-india.org/UHV-</u> <u>II%20Class%20Notes%20&%20Handouts/UHV%20Handout%205-</u> <u>Harmony%20in%20the%20Nature%20and%20Existence.pdf</u>
- 6. <u>https://fdp-si.aicte-india.org/download/FDPTeachingMaterial/3-days%20FDP-SI%20UHV%20Teaching%20Material/Day%203%20Handouts/UHV%203D%20D3-S2A%20Und%20Nature-Existence.pdf</u>
- 7. <u>https://fdp-si.aicte-</u> india.org/UHV%20II%20Teaching%20Material/UHV%20II%20Lecture%2023-25%20Ethics%20v1.pdf
- 8. <u>https://www.studocu.com/in/document/kiet-group-of-institutions/universal-human-values/chapter-5-holistic-understanding-of-harmony-on-professional-ethics/62490385</u>
- 9. <u>https://onlinecourses.swayam2.ac.in/aic22_ge23/preview</u>

С

3

II B.Tech. I Semester L T P 3 0 0

Surveying

Course Outcomes

At the end of the course, the learners will be able to

Course	Course Outcomes	
CO 1	Utilize the principles & methods of surveying to measure horizontal & vertical distances and angles	L2
CO 2	Recognize the basic principles of compass surveying, such as traversing and calculating angles.	L3
CO 3	Diagnose sources of errors and implement rectification methods	L2
CO 4	Grasp the fundamentals of theodolite surveying, such as trigonometric leveling and traversing.	L3
CO 5	Set out curves and operate modern surveying equipment	L4

Unit 1

Introduction and Basic Concepts: Introduction, Objectives, classification and principles of surveying, Surveying accessories.. Linear distances- Approximate methods, Direct Methods- Chains- Tapes, ranging, Tape corrections. Plane Table Surveying: Introduction, Accessories, Working operations, Methods of plane tabling

Unit 2

Compass Survey: Introduction, Meridians, Azimuths and Bearings-Related problems, declination, computation of angle-related problems. Traversing-Purpose-types of traverse, Temporary adjustments of compass-Magnetic Declination-Related problems, Local attraction-Related Problems-Errors in compass survey

Unit 3

Leveling- Types of levels, methods of levelling, and Determination of levels, Effect of Curvature of Earth and Refraction. Contouring- Characteristics and uses of Contours, methods of contour surveying. Areas - Determination of areas consisting of irregular boundary and regular boundary. Volumes -Determination of volume of earth work in cutting and embankments for level section, capacity of reservoirs.

Unit 4

Theodolite Surveying: Types of Theodolites, temporary adjustments, measurement of horizontal angle by repetition method and reiteration method, measurement of vertical Angle, Trigonometrical leveling when base is accessible and inaccessible. Traversing: Methods of traversing, traverse computations and adjustments, Introduction to Omitted measurements.

Unit 5

Tacheometric Surveying::Definition, Advantages of Tacheometric surveying , Principle of stadia measurements, Determination of constants K and C, Stadia and tangential methods of Tachometry. Distance and Elevation formulae for Staff vertical position.

Curves: Types of curves and their necessity, elements of simple, compound, reverse curves.

Modern Surveying Methods: Principle and types of E.D.M. Instruments, Total station- advantages and Applications. Introduction to Global Positioning System. Introduction to Drone survey and LiDAR Survey (Light Detection and Ranging). 61 Textbooks:

- 1. Duggal S. K., Surveying (Vol. 1 & 2), Tata McGraw Hill Publishing Co. Ltd., New Delhi, 5th edition, 2019.
- 2 Subramanian, R, Surveying and Levelling, delhi: Standard book house.

Reference Books:

- 1. B. C. Punmia, Ashok Kumar Jain, and Arun Kumar Jain, Surveying (Vol. 1), Laxmi Publications (P) Ltd., New Delhi, 18th edition, 2024.
- 2. B. C. Punmia, Ashok Kumar Jain, and Arun Kumar Jain, Surveying (Vol. 2), Laxmi Publications (P) Ltd., New Delhi, 17th edition, 2022.
- **3**. B. C. Punmia, Ashok Kumar Jain, and Arun Kumar Jain, Surveying (Vol. 3), Laxmi Publications (P) Ltd., New Delhi, 16th edition, 2023.
- 4. Chandra A. M., Plane Surveying and Higher Surveying, New Age International Pvt. Ltd., Publishers, New Delhi, 3rd edition, 2015.
- 5. N. Basak, Surveying and Levelling, Tata McGraw Hill Publishing Co. Ltd., New Delhi, 4th edition, 2014.
- 6. Arora K. R., Surveying (Vol. 1, 2 & 3), Standard Book House, Delhi, 12th edition, 2015.

Web Resources:

https://koha.srmap.edu.in/cgi-bin/koha/opacdetail.pl?biblionumber=11522&shelfbrowse_itemnumber=23066

II – I Semester	L	Т	Р	С
Strength of Materials	3	0	0	3

Course Outcomes

At the end of the course, the learners will be able to

Course	Course Outcomes	
CO 1	Explain the basic materials' behavior under the influence of different external loading and support conditions.	L2
CO 2	Illustrate diagrams indicating the variation of key performance features like axial forces, bending moments, and shear forces in structural members.	L3
CO 3	Understand and calculate section modulus for determining stresses developed in beams.	L2
CO 4	Analyze deflections due to various loading conditions.	L3
CO 5	Evaluate stresses across sections of thin and thick cylinders and columns to determine optimum sections to withstand internal pressure using Lame's equation.	L4

Unit 1

Simple Stresses and Strains: Elasticity and plasticity — Types of stresses and strains — Hooke's law — Factor of safety, Poisson's ratio - Relationship between Elastic constants — Bars of varying section — stresses in composite bars.

Unit 2

Shear Force and Bending Moment: Definition of beam — Types of beams — Concept of shear force and bending moment — Point of contra flexure — Relation between S.F., B.M and rate of loading at a section of a beam; S.F and B.M diagrams for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads.

Unit 3

Flexural and Shear Stresses: Flexural Stresses: Theory of simple bending — Assumptions — Derivation of bending equation, Neutral axis — Determination of bending stresses — section modulus of rectangular and circular sections (Solid and Hollow), I, T, Angle and Channel sections — Design of simple beams. Shear Stresses: Derivation of formula — Shear stress distribution across various beam sections like rectangular, circular, I, T Angle sections. Torsion – circular shafts only.

Unit 4

Deflection of Beams: Double integration and Macaulay's methods — Determination of slope and deflection for cantilever, simply supported and overhanging beams subjected to point loads, uniformly distributed loads, uniformly varying loads, partial uniformly distributed loads, couple and combination of these loads. Mohr's theorems — Moment area method — application to simple cases of cantilever.

Unit 5

Torsion of Circular Shafts: Theory of pure torsion – Derivation of Torsion equation -Assumptions made in the theory of pure torsion – Polar section modulus – Power transmitted by shafts – Combined bending and torsion.

Columns and Cylindrical Shells: Introduction- Classification of columns - Axially loaded compression members

- Euler's crippling load theory - Derivation of Euler's critical load formulae for various end conditions - Equivalent loag th - Slenderness ratio - Euler's critical stress - Limitations of Euler's theory - Rankine - Gordon formula - Eccentric loading and Secant formula - Prof. Perry's formula.

Textbooks

- 1. R. K. Bansal, Strength of Materials, Lakshmi Publications, 16th edition, 2022.
- 2. Rajput,R.K., Strength of Material New delhi: S.Chand & co,
- 3. Strength of materials Subramanian, R America Oxford University Press
- 4. Strength of Materials(Part-II) Stephen, Timoshenko, New Delhi CBS Publishers and Distributors.

References

- 1. E. P. Popov, Mechanics of Solids, Prentice Hall, 2nd edition, 2015
- R. K. Rajput, A Textbook of Strength of Materials (Mechanics of Solids, SI Units), S. Chand & Co., New Delhi, 7th edition, 2022

Online Modules

https://archive.nptel.ac.in/courses/105/104/105104101/

https://nptel.ac.in/courses/105107122

http://www.digimat.in/nptel/courses/video/105104101/L04.html

II – I Semester				
	I	Т	Р	С
Fluid Mechanics		1	1	
Thura Mitchanics	3	0	0	3
		- ×	- ×	-

Course Outcomes

At the end of the course, the learners will be able to

Course	Outcomes	RBT Level
CO 1	Explain the principles of fluid statics, kinematics, and dynamics.	L2
CO 2	Apply the laws of fluid statics and concepts of buoyancy.	L3
CO 3	Describe the fundamentals of fluid kinematics and differentiate between types of fluid flows.	L2
CO 4	Apply the principle of conservation of energy for flow measurement.	L3
CO 5	Analyze the losses in pipes and discharge through pipe networks.	L4

Unit 1

Basic concepts and definitions: Distinction between a fluid and a solid; Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; Variation of viscosity with temperature, Newton law of viscosity; Vapor pressure, Boiling point, Surface tension, Capillarity, Bulk modulus of elasticity, Compressibility

Unit 2

Fluid statics: Fluid Pressure: Pressure at a point, Pascal's law, pressure variation with temperature, density and altitude. Piezometer, U-Tube Manometer, Single Column Manometer, U Tube Differential Manometer. Pressure gauges, Hydrostatic pressure and force: horizontal, vertical and inclined surfaces. Buoyancy and stability offloating bodies

Unit 3

Fluid kinematics: Classification of fluid flow : steady and unsteady flow; uniform and non-uniform flow; laminar and turbulent flow; rotational and irrotational flow; compressible and incompressible flow; ideal and real fluidflow; one, two and three dimensional flows; Stream line, path line, streak line and stream tube; stream function, velocity potential function. One, two and three -Dimensional continuity equations in Cartesian coordinates.

Unit 4

Fluid Dynamics: Surface and body forces; Equations of motion - Euler's equation; Bernoulli's equation - Derivation; Energy Principle; Practical applications of Bernoulli's equation : Venturimeter, orifice meter and Pitot tube; Momentum principle; Forces exerted by fluid flow on pipe bend; Vortex Flow - Free and Forced; Definitions of Reynolds Number, Froude Number, Mach Number, Weber Number and Euler Number;

Unit 5

Analysis Of Pipe Flow: Energy losses in pipelines; Darcy - Weisbach equation; Minor losses in pipelines; Hydraulic Grade Line and Total Energy Line; Concept of equivalent length – Pipes in Parallel and Series.

Centrifugal-Pumps: Pump installation details-classification-work done- efficiencies-specific speed, multistage pumpspumps in parallel and series - performance of pumps-characteristic curves- Cavitation.

Reciprocating Pumps: Introduction, classification, components, working, discharge, indicator diagram, work done and slip.

Textbooks:

- 1. P. M. Modi and S. M. Seth, Hydraulics and Fluid Mechanics, Standard Book House 22nd, 2019.
- 2. Hydraulics fluid mechanics and fluid machines 7th ed Ramamrutham, S, New delhi : dhan pat rai.

Reference Books:

- 1. R. K. Bansal, A text of Fluid mechanics and hydraulic machines, Laxmi Publications (P) Ltd., New Delhi 11th edition, 2024.
- 2. Fluid Mechanics by Frank M. White, Henry Xue, Tata McGraw Hill, 9th edition, 2022.
- Introduction to Fluid Mechanics & Fluid Machines by S K Som, Gautam Biswas, S Chakraborty Tata McGraw Hill, 3rd edition 2011

Online Web sources

https://archive.nptel.ac.in/courses/112/105/112105269/

https://nptel.ac.in/courses/112104118

https://nptel.ac.in/courses/105103192

https://archive.nptel.ac.in/courses/112/105/112105171/

II – I Semester

]	L	Т	Р	C
	0	0	3	1.5

Surveying Laboratory

Course Outcomes

At the end of the course, the learners will be able to

Course	Course Outcomes				
CO 1	Operate various linear and angular measuring instruments. (Apply)				
CO 2	Record linear and angular measurements accurately. (Apply)				
CO 3	Calculate area and volume by analyzing data obtained from surveying activities. (Analyze)				
CO 4	Utilize modern equipment such as a total station. (Apply)				
CO 5	Compile field notes from survey data. (Create)				

List of Field Works:

- 1. Survey in an area by chain survey (Closed circuit).
- 2. Determination of distance between two inaccessible points by using compass.
- 3. Plane table survey; finding the area of a given boundary by the method of Radiation
- 4. Two Point Problem by the plane table survey.
- 5. Fly levelling: Height of the instrument method (differential leveling)
- 6. Fly levelling: rise and fall method.
- 7. Theodolite survey: determining the horizontal and vertical angles by the method of repetition method
- 8. Theodolite survey: finding the distance between two in accessible points.
- 9. Theodolite survey: finding the height of far object.
- 10. Tachometric Survey: Heights and distance problems using tachometric principles.
- 11. Total Station: Introduction to total station and practicing setting up, leveling up and elimination of parallax error.
- 12. Determination of area perimeter using total station.
- 13. Determination of distance between two inaccessible point by using total station.
- 14. Setting out a curve

Note: Any 10 field work assignments must be completed

Web sources:

https://sl-iitr.vlabs.ac.in/

https://scene.iitmandi.ac.in/teaching_labs_details/survey-lab

	L	Т	Р	C
II-I Semester	0	0	3	1.5

STRENGTH OF MATERIALS LABORATORY

Course Outcomes

At the end of the course, the learners will be able to

- Conduct tensile strength tests and illustrate stress-strain diagrams for ductile metals. (Apply)
- Perform bending tests and determine load-deflection curves for steel/wood. (Analyze)
- Conduct torsion tests and calculate torsion parameters. (Apply)
- Perform hardness, impact, and shear strength tests, and compute hardness numbers, impact, and shear strengths. (Evaluate)
- Conduct tests on closely coiled and open coiled springs and compute deflections. (Apply)

List of experiments:

- 1. Tension test on mild steel / HYSD bars
- 2. Bending test on (Steel/Wood) Cantilever beam.
- 3. Bending test on simply supported beam.
- 4. Torsion test
- 5. Hardness test
- 6. Compression test on Open coiled springs
- 7. Tension test on Closely coiled springs
- 8. Compression test on wood
- 9. Izod / Charpy Impact test on metals
- 10. Shear test on metals
- 11. Continuous beam deflection test

Web Sources:

https://www.vlab.co.in/ba-nptel-labs-civil-engineering https://sm-nitk.vlabs.ac.in/

	L	Т	Р	C
II-I Semester	1	0	2	2
SOFT SKILLS				

Course Objectives:

- \Box To encourage all round development of the students by focusing on soft skills
- □ To make the students aware of critical thinking and problem-solving skills
- \Box To enhance healthy relationship and understanding within and outside an organization
- \Box To function effectively with heterogeneous teams

Course Outcomes

- □ List out various elements of soft skills (L1, L2)
- □ Describe methods for building professional image (L1, L2)
- □ Apply critical thinking skills in problem solving (L3)
- \Box Analyse the needs of an individual and team for well-being (L4)
- \Box Assess the situation and take necessary decisions (L5)

 \Box Create a productive workplace atmosphere using social and work-life skills ensuring personal and emotional well-being (L6)

UNIT I

Soft Skills & Communication Skills

Soft Skills - Introduction, Need - Mastering Techniques of Soft Skills – Communication Skills -Significance, process, types - Barriers of communication - Improving techniques. Activities:

Intrapersonal Skills- Narration about self- strengths and weaknesses- clarity of thought – self-expression – articulating with felicity.

(The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes and literary sources)

Interpersonal Skills- Group Discussion – Debate – Team Tasks - Book and film Reviews by groups - Group leader presenting views (non- controversial and secular) on contemporary issues or on a given topic.

Verbal Communication- Oral Presentations- Extempore- brief addresses and speeches- convincingnegotiating- agreeing and disagreeing with professional grace.

Non-verbal communication – Public speaking – Mock interviews – presentations with an objective to identify non- verbal clues and remedy the lapses on observation.

DR23 Department of Electronics and Communication EngineeringRegulations

COURSE STRUCTURE

(Applicable from the academic year 2023-24 onwards)

UNIT II Critical Thinking

Active Listening – Observation – Curiosity – Introspection – Analytical Thinking – Openmindedness – Creative Thinking - Positive thinking - Reflection

Activities:

Gathering information and statistics on a topic - sequencing – assorting – reasoning – critiquing issues –placing the problem – finding the root cause - seeking viable solution – judging with rationale – evaluating the views of others - Case Study, Story Analysis

UNIT III

Problem Solving & Decision Making

Meaning & features of Problem Solving – Managing Conflict – Conflict resolution – Team building - Effective decision making in teams – Methods & Styles Activities:

Placing a problem which involves conflict of interests, choice and views – formulating the problem – exploring solutions by proper reasoning – Discussion on important professional, career and organizational decisions and initiate debate on the appropriateness of the decision. Case Study & Group Discussion.

UNIT IV

Emotional Intelligence & Stress Management

Managing Emotions – Thinking before Reacting – Empathy for Others – Self-awareness – Self-Regulation – Stress factors – Controlling Stress – Tips

Activities:

Providing situations for the participants to express emotions such as happiness, enthusiasm, gratitude, sympathy, and confidence, compassion in the form of written or oral presentations. Providing opportunities for the participantsto narrate certain crisis and stress –ridden situations caused by failure, anger, jealousy, resentment and frustration in the form of written and oral presentation, Organizing Debates.

UNIT V

Corporate Etiquette

Etiquette- Introduction, concept, significance - Corporate etiquette - meaning, modern etiquette, benefits - Global and local culture sensitivity - Gender Sensitivity - Etiquette in interaction- Cell phone etiquette - Dining etiquette - Netiquette - Job interview etiquette -Corporate grooming tips -Overcoming challenges

Activities

Providing situations to take part in the Role Plays where the students will learn about bad and good manners and etiquette - Group Activities to showcase gender sensitivity, dining etiquette etc. - Conducting mock job interviews - Case Study - Business Etiquette Games

NOTE-:

1. The facilitator can guide the participants before the activity citing examples from the lives of the great, anecdotes, epics, scriptures, autobiographies and literary sources which bear true relevance to the prescribed skill.

2. Case studies may be given wherever feasible for example for Decision Making- The decision of King Lear.

Prescribed Books:

1. Mitra Barun K, Personality Development and Soft Skills, Oxford University Press, Pap/Cdr edition 2012

2. Dr Shikha Kapoor, Personality Development and Soft Skills: Preparing for Tomorrow, I K International Publishing House, 2018

Reference Books:

1. Sharma, Prashant, Soft Skills: Personality Development for Life Success, BPB Publications 2018.

2. Alex K, Soft Skills S.Chand & Co, 2012 (Revised edition)

3. Gajendra Singh Chauhan & Sangeetha Sharma, Soft Skills: An Integrated Approach to Maximise Personality Published by Wiley, 2013

4. Pillai, Sabina & Fernandez Agna, Soft Skills and Employability Skills, Cambridge University Press, 2018

Soft Skillsfor a Big Impact (English, Paperback, Renu Shorey) Publisher: Notion Press
 Dr. Rajiv Kumar Jain, Dr. Usha Jain, Life Skills (Paperback English) Publisher : Vayu Education of India, 2014

L	Т	P	C
2	0	0	0

II – I Semester

ENVIRONMENTAL SCIENCE

- To make the students to get awareness on environment.
- To understand the importance of protecting natural resources, ecosystems for future generations and pollution causes due to the day-to-day activities of human life
- To save earth from the inventions by the engineers.

UNIT I

Multidisciplinary Nature of Environmental Studies: – Definition, Scope and Importance – Need for Public Awareness.

Natural Resources : Renewable and non-renewable resources – Natural resources and associated problems – Forest resources – Use and over – exploitation, deforestation, case studies – Timber extraction – Mining, dams and other effects on forest and tribal people – Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. – Energy resources:

UNIT II

Ecosystems: Concept of an ecosystem. – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the following ecosystem:

- a. Forest ecosystem.
- b. Grassland ecosystem
- c. Desert ecosystem.
- d. Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Biodiversity and its Conservation : Introduction 0 Definition: genetic, species and ecosystem diversity – Bio-geographical classification of India – Value of biodiversity: consumptive use, Productive use, social, ethical, aesthetic and option values – Biodiversity at global, National and local levels – India as a mega-diversity nation – Hot-sports of biodiversity – Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – Endangered and endemic species of India – Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

UNIT III

Environmental Pollution: Definition, Cause, effects and control measures of :

- a. Air Pollution.
- b. Water pollution
- c. Soil pollution
- d. Marine pollution
- e. Noise pollution
- f. Thermal pollution
- g. Nuclear hazards

Solid Waste Management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: floods, earthquake, cyclone and landslides.

UNIT IV

Social Issues and the Environment: From Unsustainable to Sustainable development – Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns. Case studies – Environmental ethics: Issues and possible solutions – Climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust. Case Studies – Wasteland reclamation. – Consumerism and waste products. – Environment Protection Act. – Air (Prevention and Control of Pollution) Act. – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – Issues involved in enforcement of environmental legislation – Public awareness.

UNIT V

Human Population and the Environment: Population growth, variation among nations. Population explosion – Family Welfare Programmes. – Environment and human health – Human Rights – Value Education – HIV/AIDS – Women and Child Welfare – Role of information Technology in Environment and human health – Case studies.

Field Work: Visit to a local area to document environmental assets River/forest grassland/hill/mountain – Visit to a local polluted site-Urban/Rural/Industrial/Agricultural Study of common plants, insects, and birds – river, hill slopes, etc..

Textbooks:

- 1. Textbook of Environmental Studies for Undergraduate Courses Erach Bharucha for University Grants Commission, Universities Press.
- 2. Palaniswamy, "Environmental Studies", Pearson education
- 3. S.Azeem Unnisa, "Environmental Studies" Academic Publishing Company

4. K.Raghavan Nambiar, "Text book of Environmental Studies for Undergraduate Courses as per UGC model syllabus", Scitech Publications (India), Pvt. Ltd.

References:

- 1. Deeksha Dave and E.Sai Baba Reddy, "Textbook of Environmental Science", Cengage Publications.
- 2. M.Anji Reddy, "Text book of Environmental Sciences and Technology", BS Publication.
- 3. J.P.Sharma, Comprehensive Environmental studies, Laxmi publications.
- 4. J. Glynn Henry and Gary W. Heinke, "Environmental Sciences and Engineering", Prentice Hall of India Private limited
- 5. G.R.Chatwal, "A Text Book of Environmental Studies" Himalaya Publishing House
- 6. Gilbert M. Masters and Wendell P. Ela, "Introduction to Environmental Engineering and Science, Prentice Hall of India Private limited.

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Course Objectives:

- To inculcate the basic knowledge of microeconomics and financial accounting
- To make the students learn how demand is estimated for different products, inputoutput relationship for optimizing production and cost
- To Know the Various types of market structure and pricing methods and strategy
- To give an overview on investment appraisal methods to promote the students to learn how to plan long-term investment decisions.
- To provide fundamental skills on accounting and to explain the process of preparing financial statements.

Course Outcomes:

- Define the concepts related to Managerial Economics, financial accounting and management(L2)
- Understand the fundamentals of Economics viz., Demand, Production, cost, revenue and markets (L2)
- Apply the Concept of Production cost and revenues for effective Business decision (L3)
- Analyze how to invest their capital and maximize returns (L4)
- Evaluate the capital budgeting techniques. (L5)
- Develop the accounting statements and evaluate the financial performance of business entity (L5)

UNIT - I Managerial Economics

Introduction – Nature, meaning, significance, functions, and advantages. Demand-Concept, Function, Law of Demand - Demand Elasticity- Types – Measurement. Demand Forecasting-Factors governing Forecasting, Methods. Managerial Economics and Financial Accounting and Management.

UNIT - II Production and Cost Analysis

Introduction – Nature, meaning, significance, functions and advantages. Production Function– Least- cost combination– Short run and long run Production Function- Isoquants and Is costs, Cost & Break-Even Analysis - Cost concepts and Cost behaviour- Break-Even Analysis (BEA) - Determination of Break-Even Point (Simple Problems).

UNIT - III Business Organizations and Markets

Introduction – Forms of Business Organizations- Sole Proprietary - Partnership - Joint Stock Companies - Public Sector Enterprises. Types of Markets - Perfect and Imperfect Competition - Features of Perfect Competition Monopoly- Monopolistic Competition–Oligopoly-Price-Output Determination - Pricing Methods and Strategies

UNIT - IV Capital Budgeting

Introduction – Nature, meaning, significance. Types of Working Capital, Components, Sources of Short-term and Long-term Capital, Estimating Working capital requirements. CapitalBudgeting– Features, Proposals, Methods and Evaluation. Projects – Pay Back Method, Accounting Rate of Return (ARR) Net Present Value (NPV) Internal Rate Return (IRR) Method (sample problems)

UNIT - V Financial Accounting and Analysis

Introduction – Concepts and Conventions- Double-Entry Bookkeeping, Journal, Ledger, Trial Balance- Final Accounts (Trading Account, Profit and Loss Account and Balance Sheet with simple adjustments). Introduction to Financial Analysis - Analysis and Interpretation of Liquidity Ratios, Activity Ratios, and Capital structure Ratios and Profitability.

Textbooks:

- 1. Varshney & Maheswari: Managerial Economics, Sultan Chand.
- 2. Aryasri: Business Economics and Financial Analysis, 4/e, MGH.

Reference Books:

- 1. Ahuja Hl Managerial economics Schand.
- 2. S.A. Siddiqui and A.S. Siddiqui: Managerial Economics and Financial Analysis, NewAge International.
- 3. Joseph G. Nellis and David Parker: Principles of Business Economics, Pearson, 2/e,New Delhi.
- 4. Domnick Salvatore: Managerial Economics in a Global Economy, Cengage.

Online Learning Resources:

https://www.slideshare.net/123ps/managerial-economics-ppt https://www.slideshare.net/rossanz/production-and-cost-45827016 https://www.slideshare.net/darkyla/business-organizations-19917607 https://www.slideshare.net/balarajbl/market-and-classification-of-market https://www.slideshare.net/ruchi101/capital-budgeting-ppt-59565396 https://www.slideshare.net/ashu1983/financial-accounting

II – II Semester	L	Т	Р	С
Engineering Geology	3	0	0	3

Course Outcomes

At the end of the course, the learners will be able to

ā

Course	Outcomesā
CO 1	Explain the significance of geological agents on the Earth's surface and their importance in civil engineering. (Understand)ā
CO 2	Identify and understand the properties of megascopic minerals and rocks. (Understand)
CO 3	Describe the concepts of groundwater and its geophysical methods and apply knowledge to identify site parameters such as contour, slope, and aspect for topography. (Understand, Apply)
CO 4	Classify earthquake-prone areas, landslides, and subsidence zones, and measure these hazards to practice hazard zonation. (Analyze)
CO 5	Investigate project sites for civil engineering projects, including site selection for mega projects like dams, reservoirs, and tunnels, using strike and dip problem-solving. (Evaluate, Analyze)

Unit 1

Introduction: Branches of Geology, Importance of Geology in Civil Engineering with case studies, Weathering of rocks, Geological agents, weathering process of Rock, Rivers and geological work of rivers.

Unit 2

Mineralogy And Petrology: Definitions of mineral and rock-Different methods of study of mineral and rock. Physical properties of minerals and rocks for megascopic study for the following minerals and rocks. Common rock forming minerals: Feldspar, Quartz Group, Olivine, Augite, Hornblende, Mica Group, Asbestos, Talc, Chlorite, Kyanite, Garnet, Calcite and ore forming minerals are Pyrite, Hematite, Magnetite, Chlorite, Galena, Pyrolusite, Graphite, Chromite, Magnetite and Bauxite. Classification, structures, textures and forms of Igneous rocks, Sedimentary rocks, Metamorphic rocks, and their megascopic study of granite varieties, (pink, gray, green). Pegmatite, Dolerite, Basalt etc., Shale, Sandstone, Limestone, Laterite, Quartzite, Gneiss, Schist, Marble, Khond alite and Slate.

Unit 3

Structural Geology: Strike, Dip and Outcrop study of common geological structures associating with the rocks such as Folds, Faults, Joints and Unconformities- parts, types, mechanism and their importance in Civil Engineering.

Unit 4

Ground Water: Water table, Cone of depression, Geological controls of Ground Water Movement, Ground Water Exploration Techniques. **Earthquakes and Land Slides**: Terminology, Classification, causes and effects, Shield areas and Seismic bells, Richter scale intensity, Precautions of building constructions in seismic areas. Classification of Landslides, Causes and Effects, measures to be taken prevent their occurrence at Landslides. **Geophysics:** Importance of Geophysical methods, Classification, Principles of Geophysical study by Gravitymethod, Magnetic method, Electrical methods, Seismic methods, Radiometric method and Electrical resistivity, Seismic refraction methods and Engineering properties of rocks.

Unit 5

Geology of Dams, Reservoirs and Tunnels: Types and purpose of Dams, Geological considerations in the selection of a Dam site. Geology consideration for successful constructions of reservoirs, Life of Reservoirs. Purpose of Tunnelling, effects, Lining of Tunnels. Influence of Geology for successful Tunnelling.

Textbooks:

1. Engineering Geology for Civil Engineers Varghese .P.C. Delhi : pHI learning.

2.N. Chenna Kesavulu, Engineering Geology, Laxmi Publications, 2nd edition.

References:

1. Subinoy Gangopadhay, Engineering Geology, Oxford University Press, 1st edition, 2012.

2.D. Venkat Reddy, Engineering Geology, Vikas Publishing, 2nd edition, 2017.

Web Sources <u>https://nptel.ac.in/courses/105105106</u> <u>https://onlinecourses.nptel.ac.in/noc23_ce107/preview</u> Virtual Lab <u>https://mg-nitk.vlabs.ac.in/</u>

II – II Semester Building Materials and Concrete Technology

Course Outcomes

L	Т	Р	С
3	0	0	3

At the end of the course, the learners will be able to

Course	Outcomes
CO 1	Know various engineering properties of building construction materials and suggest their suitability (Understand)
CO 2	Describe the basic ingredients of concrete and their role in its production and behavior in the field and Test the properties of fresh and hardened concrete. (Apply)
CO 3	Explain the basic concepts of concrete. (Understand)
CO 4	Design the concrete mix using the BIS method. (Apply)
CO 5	Evaluate the ingredients of concrete through lab test results and recognize the importance of concrete quality. (Evaluate)

Unit 1

Stones: Classification of Stones – Properties of stones in structural requirements.

Bricks: Composition of good brick earth, Various methods of manufacturing of bricks.

Tiles: Characteristics of good tile - Manufacturing methods, Types of tiles.

Wood: Structure – Properties – Seasoning of timber – Classification of various types of woods used in buildings – Defects in timber.

Paints: White washing and distempering, Constituents of paint - Types of paints - Painting of new and old wood - Varnish

Unit 2

Cements: Portland cement – Chemical composition – Hydration, setting of cement, Fineness of cement, Structure of hydrate cement – Test for physical properties – Different grades of cements – Admixtures – Mineral and chemical admixtures – accelerators, retarders, air entrainers, plasticizers, super plasticizers, fly ash andsilica fume.

Aggregates: Classification of aggregate – Particle shape & texture – Bond, strength & other mechanical properties of aggregates – Specific gravity, Bulk density, porosity, adsorption & moisture content of aggregate – Bulking of sand – Alkali aggregate reaction – Thermal properties – Sieve analysis – Fineness modulus – Grading curves - Quality of mixing water.

Unit 3

Building Services: Plumbing Services: Water Distribution, Sanitary – Lines & Fittings; Ventilations: Functional requirements systems of ventilations. Air-conditioning - Essentials and Types; Acoustics – characteristic – absorption – Acoustic design; Fire protection – Fire Hazards – Classification of fireresistant materials and constructions

Fresh Concrete: Steps in Manufacture of Concrete–Properties of fresh concrete-Workability – Factors affecting workability – Measurement of workability by different tests, setting times of concrete, Effect of time and temperature on workability – Segregation & bleeding – Mixing and vibration of concrete, Shotcrete.

Unit 4

Hardened Concrete: Water / Cement ratio – Abram's Law – Gel/space ratio – Nature of strength of concrete – Maturity concept – Strength in tension & compression – Factors affecting strength – Relation between compression & tensile strength – Testing of Hardened Concrete, Factors affecting strength, Non-destructive testing methods Elasticity, Creep and Shrinkage – Modulus of elasticity – Dynamic modulus of elasticity – Poisson's ratio – Creep of concrete – Factors influencing creep – Relation between creep & time – Effects of creep – Shrinkage – types of shrinkage.

Unit 5

Mix Design and Special Concretes: Ready mixed concrete, Fibre reinforced concrete – Different types of fibres – Factors affecting properties of FRC, High performance concrete – Self consolidating concrete, Self-healing concrete. Factors in the choice of mix proportions –Quality control of concrete- Statistical methods- Acceptance Criteria-Concepts Proportioning of concrete mixes by ACI method and IS Code method

Textbooks

- 1. S. K. Duggal, "Building Materials", 2nd Edition, New Age International Publishers, 2010.
- 2. S.C. Rangwala, "Engineering Materials", Charotar Publications, New Delhi, 2nd Edition.
- 3. M. S. Shetty, Concrete Technology, S. Chand & Co., 2004.
- 4. M. L. Gambhir, Concrete Technology, Tata McGraw Hill Publishers, New Delhi, 5th edition, 2013.

References

- 1. Building Material Varghese, P.C, New Delhi P H I
- 2. Building Materials Duggal, S.K. Delhi New Age International
- 3. Concrete Technology: Theory and Practice M.S. Shetty, New Delhi S. Chand & Company Ltd.
- 4. Concrete Technology Santha kumar, A.R America Oxford University Press.

Web sources

https://archive.nptel.ac.in/courses/105/106/105106206/

https://archive.nptel.ac.in/courses/105/102/105102088/

https://archive.nptel.ac.in/courses/105/102/105102012/

https://archive.nptel.ac.in/courses/105/104/105104030/

II – II Semester	L	Т	Р	С
Structural Analysis	3	0	0	3

Course Outcomes

At the end of the course, the learners will be able to

Course Outcomes		
CO 1	Apply energy theorems to evaluate trusses. (Apply)	
CO 2	Analyze indeterminate structures using Castigliano's Second Theorem. (Analyze)	
CO 3	Analyze the behavior of fixed and continuous beams. (Analyze)	
CO 4	Evaluate continuous beams and portal frames using the slope-deflection method. (Evaluate)	
CO 5	Evaluate continuous beams and portal frames using the moment-distribution method. (Evaluate)	

Unit 1

Energy Theorems: Introduction-Strain energy in linear elastic system, expression of strain energy due to axial load, bending moment and shear forces – Castigliano 's first theorem, Deflections of simple beams and pinjointed trusses.

Unit 2

Indeterminate Structures: Indeterminate Structural Analysis – Determination of static and kinematic indeterminacies – Solution of trusses with upto two degrees of internal and external indeterminacies – Castigliano 's–II theorem.

Unit 3

Fixed and Continuous Beams: Fixed beams: Analysis, SF and BM and calculations of deflections, effect of sinking and rotation of a support. Statically indeterminate (maximum of three span using three moment theorem) beams with uniformly distributed load, central point load, eccentric point load, number of point loads, uniformly varying load, couple and combination of loads – Shear force and Bending moment diagrams–

Unit IV

Slope - Deflection Method: Introduction-derivation of slope deflection equations- application to continuous beams with and without settlement of supports - Analysis of single bay and single storeyed portal frames without sway.

Unit V

Moment Distribution Method: Introduction to moment distribution method- Application to continuous beams with and without settlement of supports-Analysis of Analysis of single bay and single storeyed portal frames without sway.

Textbooks:

- 1. C. S. Reddy, Basic Structural Analysis, Tata McGraw Hill Publishers, 3rd edition, 2017.
- 2. V. N. Vazirani and M. M. Ratwani, Analysis of Structures Vol. I & II, Khanna Publications, New Delhi

Reference Books:

- 1. Dr. R. Vaidyanathan and Dr. P. Perumal, Structural Analysis Vol. I and II, Laxmi Publications, 3rd edition, 2016.
- 2. Structural Analysis Hibbeler, R.C. New Delhi Pearson Education
- 3. Structural Analysis Vaidyanathan, R. bengaluru Laxmi Publications(P) Ltd

Web Sources

https://archive.nptel.ac.in/courses/105/105/105105166/

https://archive.nptel.ac.in/courses/105/101/105101085/

https://onlinecourses.nptel.ac.in/noc22_ce29/preview

II – II Semester Hydraulics and Hydraulic Machinery

L	Т	Р	С
3	0	0	3

Course Outcomes

At the end of the course, the learners will be able to

Course (Dutcomes
CO 1	Apply their knowledge of fluid mechanics in addressing problems in open channels and hydraulic machinery.
CO 2	Explain the characteristics of laminar and turbulent flows. (Understand)
CO 3	Analyze non-uniform flow problems & the hydraulic jump phenomenon in open channel flows. (Analyze)
CO 4	Evaluate the impact of jets on plates and Centrifugal pumps (Evaluate)
CO 5	Describe the principles, losses, and efficiencies of Turbines. (Understand)

Unit 1

Open Channel Flow – I: Introduction to Open channel flow-Comparison between open channel flow and pipe flow, Classification of open channel flows, Velocity distribution. Uniform flow – Characteristics of uniform flow, Chezy's, Manning's and Bazin formulae for uniform flow – Factors affecting Manning's Roughness Coefficient. Most economical sections. Computation of Uniform flow, Normal depth.

Critical Flow: Specific energy – critical depth - computation of critical depth – critical, sub critical and super critical flows-Channel transitions.

Unit 2

Laminar & Turbulent flow in pipes: Laminar Flow- Laminar flow through: circular pipes, annulus and parallel plates. Stoke's law, Measurement of viscosity. Reynolds experiment, Transition from laminar to turbulent flow. Resistance to flow of fluid in smooth and rough pipes-Moody's diagram – Introduction to boundary layer theory.

Unit 3

Non-Uniform flow in Open Channels: Specific energy, critical flow, discharge curve, Specific force, Specific depth, and Critical depth. Measurement of Discharge and Velocity – Gradually Varied Flow- Dynamic Equation of Gradually Varied Flow. Hydraulic Jump and classification - Elements and characteristics- Energy dissipation.

Unit 4

Impact of Jets: Hydrodynamic force of jets on stationary and moving flat, inclined and curved vanes - Velocity triangles at inlet and outlet.

Centrifugal Pumps: Pump installation details – classification – work done – Manometric head – minimum starting speed – losses and efficiencies – specific speed. Multistage pumps – pumps in parallel – performance of pumps – characteristic curves – NPSH – Cavitation. Reciprocating pumps – Working, discharge, slip indicator diagrams.

Unit 5

Hydraulic Turbines : Layout of a typical Hydropower installation – Heads and efficiencies - classification of turbines. Pelton wheel - Francis turbine - Kaplan turbine - working, working proportions, velocity diagram, work done and efficiency, hydraulic design, draft tube – theory and efficiency. Governing of turbines-surge tanks-unit and specific quantities, selection of turbines, performance characteristics-geometric similarity-cavitation. Textbooks

- 1. P. M. Modi and S. M. Seth, Hydraulics and Fluid Mechanics, Standard Book House, 22nd edition, 2019.
- 2. K. Subrahmanya, Theory and Applications of Fluid Mechanics, Tata McGraw Hill, 2nd edition, 2018.

Reference Books:

- 1. R. K. Bansal, A Text of Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 11th edition, 2024
- 2. Frank M. White, Henry Xue, Fluid Mechanics, Tata McGraw Hill, 9th edition, 2022
- 3. S. K. Som, Gautam Biswas, S. Chakraborty, Introduction to Fluid Mechanics & Fluid Machines, 3rd edition, 2011

Web Sources

https://archive.nptel.ac.in/courses/112/103/112103249/

https://nptel.ac.in/courses/105105203

https://www.youtube.com/watch?v=z9wsUWaN-oY

II – II Semester Concrete Technology Laboratory

L	Т	Р	C
0	0	3	1.5

Course Outcomes

At the end of the course, the learners will be able to

Course (Course Outcomes	
CO 1	Explain the importance of testing cement. (Understand)	
CO 2	Describe the properties of cement. (Understand)	
CO 3	Evaluate different properties of aggregates. (Evaluate)	
CO 4	Analyze fresh concrete properties and their relevance to hardened concrete. (Analyze)	
CO 5	Evaluate hardened concrete properties. (Evaluate)	

List of experiments

Tests on Cement

Normal Consistency and Fineness of cement. Initial setting time and Final setting time of cement.Specific gravity and soundness of cement.

Compressive strength of cement.

Tests on Fine and Coarse Aggregates

Grading and fineness modulus of aggregate by sieve analysis.Specific gravity of aggregate

Water absorption and bulking of sand.

Tests on fresh Concrete Workability of concrete by compaction factor methodWorkability of concrete by slump test Workability of concrete by Vee-bee test.

Tests on Hardened Concrete Compressive strength of cement concreteSplit tensile strength of concrete. Modulus of rupture Modulus of Elasticity and Poisson's Ratio

Non-Destructive testing on concrete Rebound hammer and UPV techniques andnot limited to the above (for demonstration)

Note: Any 10 experiments must be completed

II – II Semester Building Planning and Drawing

	r	
0 0	4	2

Course Outcomes

At the end of the course, the learners will be able to

Course	Outcomes
CO 1	Plan various buildings according to the building by-laws. (Create)
CO 2	Analyze the relationship between the plan, elevation, and cross-section to identify the form and functions among buildings. (Analyze)
CO 3	Illustrate signs and bonds. (Apply)
CO 4	Illustrate different building units. (Apply)
CO 5	Develop the skills to draw building elements and plan buildings according to requirements. (Create)

List of experiments

- 1. Detailing & Drawing of Sign Conventions.
- 2. Detailing & Drawing of English Bond & Flemish Bond
- 3. Detailing & Drawing of Doors & Windows.
- 4. Detailing & Drawing of Ventilators & Roofs.
- 5. Drawing of Line Diagram of Residential Buildings by using Building Bye- Laws.
- 6. Drawing of Plan, Elevation & Section from line diagram for a single Storey Building.
- 7. Drawing of Plan, Elevation & Section for Residential Building.
- 8. Drawing of Plan, Elevation & Section for School Building.
- 9. Drawing of Plan, Elevation & Section for Hospital Building.
- 10. Drawing of Plan, Elevation & Section for Industrial Building.

Textbooks

- 1. Gurcharan Singh and Jagdish Singh, Planning, Designing and Scheduling.
- 2. Building planning and drawing 8th ed Kumara swamy, N, Gujarat : Charatar publication.
- 3. M. Chakraborti, Building Planning and Drawing.

Reference Books

- 1. National Building Code, 2016 (Volume I & II). https://www.bis.gov.in/standards/technical-department/national-building-code/
- 2. M. G. Shah and C. M. Kale, Principles of Building Drawing, Trinity Publications, New Delhi.

Р

2

C

2

II – II Semester

Course Outcomes

At the end of the course, the learners will be able to

Course Outcomes	
CO 1	The objective of this lab is to teach the student usage of Auto cad, basic drawing fundamentals in various civil engineering applications, especially in building drawing.
CO 2	The objective of this course is to teach students the basic commands and tools necessary for professional 2D drawing
CO 3	Students able to learn to sketch and take field dimensions.
CO 4	Students able to learn to take data and transform it into graphic drawings.
CO 5	Students able to learn basic engineering drawing formats

L

1

Т

0

List of experiments

- 1. Introduction to Auto CAD
- 2. Different Softwares for CAD
- 3. Practice Exercises on Auto CAD Software
- 4. Drawing Plan of a building in Auto CAD
 - a) Plan of a Single Storeyed building in Auto CAD
 - b) Plan of a Multi Storeyed building in Auto CAD
- 5. Drawing Section and Elevation of a building in Auto CAD
 - a) Section and Elevation of a Single Storeyed building in Auto CAD
 - b) Section and Elevation of a Multi Storeyed building in Auto CAD
- 6. Detailing of building components like Doors, Windows, Roof Trusses
- 7. Exercises on development of working drawings of buildings in Auto CAD

II – II Semester

DESIGN THINKING & INNOVATION

 L
 T
 P
 C

 1
 0
 2
 2

Course Objectives:

The objective of this course is to familiarize students with design thinking process as a tool for breakthrough innovation. It aims to equip students with design thinking skills and ignite the minds to create innovative ideas, develop solutions for real-time problems.

Course Outcomes:

- 1. Define the concepts related to design thinking. (L1, L2)
- 2. Explain the fundamentals of Design Thinking and innovation (L1, L2)
- 3. Apply the design thinking techniques for solving problems in various sectors. (L3)
- 4. Analyse to work in a multidisciplinary environment (L4)
- 5. Evaluate the value of creativity (L5)
- 6. Formulate specific problem statements of real time issues (L3, L6)

UNIT I

Introduction to Design Thinking

Introduction to elements and principles of Design, basics of design-dot, line, shape, form as fundamental design components. Principles of design. Introduction to design thinking, history of Design Thinking, New materials in Industry.

UNIT II

Design Thinking Process

Design thinking process (empathize, analyze, idea & prototype), implementing the process in driving inventions, design thinking in social innovations. Tools of design thinking - person, costumer, journey map, brainstorming, product development

Activity: Every student presents their idea in three minutes, Every student can present design process in the form of flow diagram or flow chart etc. Every student should explain about product development.

UNIT III

Innovation

Art of innovation, Difference between innovation and creativity, role of creativity and innovation in organizations- Creativity to Innovation- Teams for innovation- Measuring the impact and value of creativity.

Activity: Debate on innovation and creativity, Flow and planning from idea to innovation, Debate on value-based innovation.

UNIT IV

Product Design

Problem formation, introduction to product design, Product strategies, Product value, Product planning, product specifications-Innovation towards product design- Case studies

Activity: Importance of modelling, how to set specifications, Explaining their own product design.

UNIT V

Design Thinking in Business Processes

Design Thinking applied in Business & Strategic Innovation, Design Thinking principles that redefine business – Business challenges: Growth, Predictability, Change, Maintaining Relevance, Extreme competition, Standardization. Design thinking to meet corporate needs- Design thinking for Startups- Defining and testing Business Models and Business Cases- Developing & testing prototypes.

DR23 wef Batch 2023-24

Activity: How to market our own product, About maintenance, Reliability and plan for startup.

Textbooks:

- 1. Tim Brown, Change by design, Harper Bollins (2009)
- 2. Idris Mootee, Design Thinking for Strategic Innovation, 2013, John Wiley & Sons.

Reference Books:

- 1. David Lee, Design Thinking in the Classroom, Ulysses press
- 2. Shrutin N Shetty, Design the Future, Norton Press
- 3. William Lidwell, Universal Principles of Design- Kritinaholden, Jill Butter.
- 4. Chesbrough. H, The Era of Open Innovation 2013

Online Learning Resources:

- https://nptel.ac.in/courses/110/106/110106124/
- https://nptel.ac.in/courses/109/104/109104109/
- https://swayam.gov.in/nd1_noc19_mg60/preview
