Dict	 DADI INSTITUTE OF ENGINEERING AND TECHNOLOGY (Approved by A.I.C.T.E., New Delhi & Permanently Affiliated to JNTUK) NAAC Accredited Institute An ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 Certified Institute NH–16, Anakapalle, Visakhapatnam–531002, Andhra Pradesh DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING COURSE DELIVERY PLAN 					
Subject: Flex Department:	ble AC Transmission Systems EEE	Class and Branch : IV EEE Academic Year: 2017				
Prepared by Course Instructor Name : A Krishna Nag Designation : Assistant Professor Signature : Date :						
•	Course Co-Ordinator Krishna Nag					
Reviewed by Program Co-Ordinator and HOD Name : A Krishna Nag Signature : Date :						
Approved by Academic Convenor Name : Signature : Date :						

i

1. Vision and Mission of the Institute and Department

Vision of the Institute:

To evolve into a premier value based technical institution ensuring academic excellence and promoting innovational research.

Mission of the Institute:

- To impart high quality technical and professional education to uplift the living standards of the youth by focusing on employability, higher education and research.
- To bridge the gap between industry and academia by introducing add on courses based on industrial and academic needs.
- To develop responsible citizens through disciplined career and acceptance of ethical values.
- To be a student centric institute imbibing experiential, innovative and lifelong learning skills addressing societal problems.

Vision of the Department:

To emerge as a hub of producing trained graduates in the field of Electrical and Electronics Engineering

Mission of the Department:

M1. To impart technical knowledge in an effective teaching and learning environment by providing good Infrastructural facilities.

M2. To encourage industrial visits, internships, MoUs to promote passion for the industrial needs.

M3. To build a committed framework for promoting collaborative learning to succeed in career.

M4. To encourage co-curricular and extra-curricular activities with an emphasis on enhancing human values and spirited team work.

PROGRAM EDUCATIONAL OBJECTIVES

PEO 1: Strengthen the knowledge in Electrical and Electronics Engineering to enable them work for modern industries by promoting energy conservation and sustainability.

PEO 2: Enrich analytical, creative and critical logical reasoning skills to solve problems faced by emerging domains of electrical and electronics engineering industries worldwide

PEO 3: Develop effective communication and inter-personal skills to work with enhanced team spirit in multidisciplinary projects with a broader ethical, professional, economical and social perspective.

PROGRAM OUTCOMES

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PO 2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural science and engineering sciences.

PO 3: Design/development of solutions: design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal and environmental considerations.

PO 4: Conduct investigations of complex problems: use research based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: Modern tool usage: create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO 6: The engineer and society: apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7: Environment sustainability: understand the impact of the professional engineering solutions in the societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: Ethics: apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9: Individual and team work: function effectively as an individual and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: Communication: communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11: Project management and finance: demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Lifelong learning: recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broader context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO-1: Professional Skills: Apply the knowledge of Mathematics, Science and Engineering to solve real time problems in the field of Power Electronics, Electrical Drives, Power Systems, Control Systems and Instrumentation.

PSO-2: Research and Innovation: Analyze and synthesize circuits by solving complex engineering problems to obtain the Optimal solution using effective software tools and hardware prototypes in the field of robotics and renewable energy systems.

PSO-3: Product development: Develop concepts and products by applying ideas of electrical domain into other Diversified engineering domains.

2. Syllabus of the Course

IV Year B.Tech EEE - II Semester 4 0 0 3		L	Т	Р	С
	IV Year B.Tech EEE - II Semester	4	0	0	3

Flexible AC Transmission Systems [FACTS]

Learning objectives:

- To learn the basics of power flow control in transmission lines using FACTS controllers
- To explain operation and control of voltage source converter.
- To understand compensation methods to improve stability and reduce power oscillations of a power system.
- To learn the method of shunt compensation using static VAR compensators.
- To learn the methods of compensation using series compensators
- To explain operation of Unified Power Flow Controller (UPFC).

Unit–I:

Introduction to FACTS

Power flow in an AC System – Loading capability limits – Dynamic stability considerations – Importance of controllable parameters – Basic types of FACTS controllers – Benefits from FACTS controllers – Requirements and characteristics of high power devices – Voltage and current rating – Losses and speed of switching – Parameter trade–off devices.

Unit–II:

Voltage source and Current source converters

Unit-III:

Shunt Compensators-1

Objectives of shunt compensation – Mid–point voltage regulation for line segmentation – End of line voltage support to prevent voltage instability – Improvement of transient stability – Power oscillation damping.

Unit–IV:

Shunt Compensators-2

Thyristor Switched Capacitor (TSC)–Thyristor Switched Capacitor – Thyristor Switched Reactor (TSC– TCR). Static VAR compensator (SVC) and Static Compensator (STATCOM): The regulation and slope transfer function and dynamic performance – Transient stability enhancement and power oscillation damping– Operating point control and summary of compensation control.

Unit V:

Series Compensators

Static series compensators: Concept of series capacitive compensation – Improvement of transient stability – Power oscillation damping – Functional requirements. GTO thyristor controlled Series Capacitor (GSC)

- Thyristor Switched Series Capacitor (TSSC) and Thyristor Controlled Series Capacitor (TCSC).

Unit–VI:

Combined Controllers

Schematic and basic operating principles of Unified Power Flow Controller (UPFC).- Application on transmission lines.

Learning Outcomes:

The student should be able to

- Understand power flow control in transmission lines using FACTS controllers.
- Explain operation and control of voltage source converter.
- Analyze compensation methods to improve stability & reduce power oscillations in transmission lines.
- Explain the method of shunt compensation using static VAR compensators.
- Understand the methods of compensations using series compensators.
- Explain operation of Unified Power Flow Controller (UPFC).

Text Books:

1. "Understanding FACTS" N.G. Hingorani and L. Guygi, IEEE Press. Indian Edition is available:— Standard Publications, 2001.

Reference Books:

1. "Flexible ac transmission system (FACTS)" Edited by Yong Hue Song and Allan T

Johns, Institution of Electrical Engineers, London.

2. Thyristor-based FACTS Controllers for Electrical Transmission Systems, by R. Mohan Mathur and Rajiv K. Varma, Wiley

3. Additional Reference Books, Journals, websites and E-links

- 1. <u>https://www.researchgate.net/publication/271743876_Flexible_AC_Transmission_System_Control</u> <u>lers_A_Review</u>
- 2. https://www.slideshare.net/udaywankar/flexible-ac-transmission-system-43062640
- 3. <u>https://www.slideshare.net/udaywankar/flexible-ac-transmission-system-43062624</u>
- 4. https://www.slideshare.net/shimireji/flexible-ac-transmission-facts
- 5. https://slideplayer.com/slide/6028821/
- 6. <u>https://www.youtube.com/watch?v=ZEbDeDochWk</u>
- 7. <u>https://www.youtube.com/watch?v=GVxY3nE5mO8&list=PLLy_2iUCG87AVyRAN4QwVQrC8</u> vSg1vWa6
- 8. https://www.youtube.com/watch?v=aYNQu7ClIh4
- 9. https://www.scientific.net/MSF.670.399
- 10. https://ieeexplore.ieee.org/abstract/document/206621

4. Gaps in the Syllabus to Meet Industry Requirements (if any)

- As per the industry requirement, a topic on Basic POWER ELECTRONIC DEVICES is to be included so that the advanced topics would be better understood
- To fill this gap, we are planning to share NPTEL video links on Power Electronics to understand the operational characteristics of various semi conductor devices

DADI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E., New Delhi & Permanently Affiliated to JNTUK) **NAAC Accredited Institute** An ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 Certified Institute NH–16, Anakapalle, Visakhapatnam–531002, Andhra Pradesh

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

Part – A

(Course Description, Course Objectives, Course Outcomes, Course Articulation Matrix)

PROGRAM: IV B.Tech., II-Sem., EEE, Section A+BACADEMIC YEAR: 2017COURSE NAME & CODE: Flexible AC Transmission Systems					
L-T-P STRUCTURE COURSE CREDITS COURSE INSTRUCTOR COURSE COORDINATO PRE-REQUISITE	: 4-0-0 : 3 : Mr. A Krishna Nag				

COURSE DESCRIPTION:

Flexible Alternating Current Transmission System controllers have become a part of modern power system. It is important for the student to understand the principle of operation of series and shunt compensators by using power electronics. As the heart of many power electronic controllers is a voltage source converter (VSC), the student should be acquainted with the operation and control of VSC. Two modern power electronic controllers are also introduced.

COURSE OBJECTIVES

The student will be able

- To learn the basics of power flow control in transmission lines using FACTS controllers
- To explain operation and control of voltage source converter.
- To understand compensation methods to improve stability and reduce power oscillations of a power system.
- To learn the method of shunt compensation using static VAR compensators.
- To learn the methods of compensation using series compensators
- To explain operation of Unified Power Flow Controller (UPFC).

COURSE OUTCOMES (COs)

The student should be able to

- Understand power flow control in transmission lines using FACTS controllers
- Explain operation and control of voltage source converter
- Analyze compensation methods to improve stability and reduce power oscillations in the transmission lines
- Explain the method of shunt compensation using static VAR compensators
- Understand the methods of compensations using series compensators
- Explain operation of Unified Power Flow Controller (UPFC)

	COURSE ARTICULATION MATRIX (Correlation between COS & POS, PSOS):													
COs	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	PO	PO	PSO1	PSO2
	1	2					- • ·			10	11	12		
CO	1	-	-	-	-	-	-	-	-	-	-	1	1	-
CO	2	2	3	1	-	-	2	-	-	-	-	2	2	2
CO	1	1	3	-	-	-	1	-	-	-	-	2	3	1
CO	1	1	3	-	-	-	2	-	-	-	-	2	2	1
1: Slight (Low) 2: Moderate (Medium)						3:	Subst	antial ((High)) - : No	ne			

COURSE ARTICULATION MATRIX (Correlation between COs & POs, PSOs):

Course Instructor

Course Coordinator

Program Co-Ordinator & HOD

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING COURSE DELIVERY PLAN

Subject Class & Branch Academic Year Faculty Name : Flexible AC Transmission Systems
: IV B.Tech II Sem EEE A + B
: 2017
: A Krishna Nag

Regulation: R13Designation: Assist

: R13 : Assistant Professor

S N	Торіс	No. of periods required	Teaching Learning Method	Proposed date of completion	Actual date of completion	HOD Review
	UNIT – 1 I	ntroductio	on to FACT	ſS		•
1	Power flow in an AC System	1	TLM1	16-02-2017		
2	Loading capability limits	1	TLM1	17-02-2017		•
3	Dynamic stability considerations	1	TLM1	18-02-2017		
4	Importance of controllable parameters	1	TLM1	19-02-2017		•
5	Basic types of FACTS controllers	1	TLM1	21-02-2017		•
6	Schematic Diagrams of controllers	1	TLM2	22-02-2017		•
7	Benefits from FACTS controllers	1	TLM4	23-02-2017		-
8	Requirements and characteristics of high power devices	1	TLM7	24-02-2017		•
9	Voltage and current rating	1	TLM4	25-02-2017		-
10	Losses and speed of switching	1	TLM1	26-02-2017		
11	Parameter trade–off devices	1	TLM6	28-02-2017		

	UNIT - 2 Voltage sour	ce and C	urrent sour	ce converters	
12	Concept of voltage source converter(VSC)	1	TLM1	02-03-2017	
13	Working Principle of VSCs	1	TLM1	3-03-2017	
14	Single phase bridge converter	1	TLM1	4-03-2017	
15	Waveforms, Equations of 1ph BC	1	TLM3	5-03-2017	
16	Square-wave voltage harmonics	1	TLM2	7-03-2017	
17	Derivation of Harmonic Current Eqn	1	TLM3	8-03-2017	
18	Three-phase full wave bridge converter	1	TLM1	9-03-2017	
19	Three-phase current source converter	1	TLM4	10-03-2017	
20	Working Principle of CSCs	1	TLM1	11-03-2017	
21	Comparison of current source converter with voltage source converter	1	TLM6	12-03-2017	
	UNIT 3 - Shunt	Compens	ators–1		
22	Objectives of shunt compensation	1	TLM1	14-03-2017	
23	Concept of Line Segmentation with phasor relations	1	TLM1	15-03-2017	
24	Mid-point voltage regulation	1	TLM1	16-03-2017	
25	End Line Compensation	1	TLM1	17-03-2017	
26	EoL voltage support to prevent voltage instability	1	TLM2	19-03-2017	
27	Improvement of transient stability	1	TLM1	21-03-2017	
28	Concept of Equal Area Criterion	1	TLM2	22-03-2017	
29	Power oscillation damping	1	TLM1	23-03-2017	
30	Comparison of Mid Point & EL Compensation	1	TLM4	24-03-2017	
31	Summary of compensating Transient, Dynamic & Voltage Instabilities	1	TLM6	25-03-2017	

	UNIT – 4 Sh	unt Com	pensators_2	2	
32	Thyristor Switched Capacitor (TSC)	1	TLM1	26-03-2017	
33	Thyristor Switched Capacitor – Thyristor Switched Reactor (TSC–TCR)	1	TLM1	28-03-2017	
34	Static VAR compensator (SVC)	1	TLM1	29-03-2017	
35	Static Compensator (STATCOM)	1	TLM2	30-03-2017	
36	The regulation Droop characteristics	1	TLM1	31-03-2017	
37	Slope transfer function	1	TLM3	01-04-2017	
38	Dynamic performance	1	TLM1	11-04-2017	
39	Transient stability enhancement	1	TLM4	12-04-2017	
40	Power oscillation damping	1	TLM1	13-04-2017	
41	Operating point control	1	TLM1	16-04-2017	
42	Summary of compensation control	1	TLM6	18-04-2017	
	UNIT 5 - Series	Compen	sators		
43	Static series compensators	1	TLM1	19-04-2017	
44	Concept of series capacitive compensation	1	TLM2	20-04-2017	
45	Improvement of transient stability	1	TLM1	21-04-2017	
46	Power oscillation damping	1	TLM1	22-04-2017	
47	Functional requirements of damping	1	TLM4	23-04-2017	
48	GTO thyristor controlled Series Capacitor (GSC)	1	TLM1	25-04-2017	
49	Thyristor Switched Series Capacitor (TSSC)	1	TLM1	26-04-2017	
50	Thyristor Controlled Series Capacitor (TCSC)	1	TLM1	27-04-2017	
51	Comparison of Series & Shunt Compensation	1	TLM6	28-04-2017	
52	Summary of Series Compensation techniques	1	TLM6	29-04-2017	

	UNIT 6 - Combined Controllers						
53	Concept of Combined Controllers	1	TLM1	30-04-2017			
54	Classification of Series-Shunt Combined Controllers	1	TLM2	02-05-2017			
55	Unified Power Flow Controller Basics	1	TLM1	4-05-2017			
56	Schematic diagram of UPFC	1	TLM2	5-05-2017			
57	Operating Principle of UPFC	1	TLM1	6-05-2017			
58	Control Block diagram of UPFC	1	TLM1	7-05-2017			
59	Interline Power Flow Controller Basics	1	TLM1	9-05-2017			
60	Schematic diagram of IPFC	1	TLM2	10-05-2017			
61	Operating Principle of IPFC	1	TLM1	11-05-2017			
62	Control Block diagram of IPFC	1	TLM4	12-05-2017			
63	Application on transmission lines	1	TLM6	13-05-2017			

Total No. of classes Required to complete the syllabus:

63

Course Instructor

Course Coordinator

Program Coordinator & HOD

DADI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E., New Delhi & Permanently Affiliated to JNTUK)

NAAC Accredited Institute

An ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 Certified Institute NH–16, Anakapalle, Visakhapatnam–531002, Andhra Pradesh

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

Part – C

Name of the Course: FACTS Academic Year: 2017 Class& Branch: IV B.Tech I SEM EEE A Regulation : R13

ACADEMIC CALENDAR:

EVALUATION PROCESS:

Evaluation Task	COs	Marks
First Mid Examination	1,2,3	M1=15
First Online Examination	1,2,3	OL1=10
First Assignment	1,2,3	A1=5
First Mid Marks Total (X1)=M1+OL1+A1	1,2,3	X1=30
Second Mid Examination	4,5,6	M2=15
Second Online Examination	4,5,6	OL2=10
Second Assignment	4,5,6	A2=5
Second Mid Marks Total (X2) =M2+OL2+A2	4,5,6	X2=30
Cumulative Internal Examination Marks (X): (80% of Highest + 80% of Le	1,2,3,4,5,6	X=30
Semester End Examinations	1,2,3,4,5,6	Y=70
Total Marks: X+Y	1,2,3,4,5,6	100

	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM5	Activity based Learning			
TLM2	LCD Projector	TLM6	Flipped//Blended Learning			
TLM3	Tutorial (Problem Solving)	TLM7	Experiential Learning			
TLM4	Participatory Learning	TLM8	Project Based Learning			

Course Instructor

Course Coordinator

Program Co-Ordinator & HOD

6. PEOs and PO's

Program Educational Objectives of the UG in Electrical and Electronics Engineering are:

PEO 1. Students shall be engaged in ongoing learning and professional development through continuous education in electrical and electronics engineering and also in the fields related to electrical engineering. **PEO 2.** Students shall be adapting updated knowledge exhibiting critical thinking skills & problem solving skills in professional engineering practices to tackle the technical challenges for the benefit of the society **PEO 3.** Students shall sustain in supportive and leading roles by improving good communication skills and by developing social ethical values.

Program Specific outcomes

PSO 1: Graduates are capable to demonstrate their logical and technical skills in analyzing various electrical systems

PSO 2: Graduates can transform and provide solution ethically and professionally for societal and environmental electrical engineering problems

PROGRAM OUTCOMES (POs):

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3:	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7:	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

7. List of the Students of the Class with Roll Numbers – IV EEE A

S.No.	Register Number	Name of the Student
1	14HN1A0213	P.Rajee
2	14U41A0201	A Sri hari
3	14U41A0203	E Ravi Teja
4	14U41A0204	G Rama Krishna
5	14U41A0205	G Manoj Kumar
6	14U41A0206	K V S B Akhil
7	14U41A0207	M Vinod Kumar
8	14U41A0209	M Indravathi
9	14U41A0211	P Likhitha
10	14U41A0212	S Dhati Divya Sri
11	14U41A0213	S Nishant
12	14U41A0214	S Venkat satish
13	14U41A0215	S Uday Kumar
14	14U41A0217	S Sai Raghu
15	14U41A0218	U Lakshman
16	15U45A0201	A Trinadh
17	15U45A0202	A Hanumanth
18	15U45A0203	A Jitendra Prasad
19	15U45A0204	A Narendra
20	15U45A0205	A Naganna
21	15U45A0206	B Murali
22	15U45A0207	B Bhargav
23	15U45A0208	B Jaswanth Kumar
24	15U45A0209	C vamsi krishna
25	15U45A0210	C V S Anirudh
26	15U45A0211	D L V Sai Kiran
27	15U45A0212	D Manikanta
28	15U45A0213	E R Krishna
29	15U45A0214	G Ooha
30	15U45A0215	Harikrishna K
31	15U45A0216	J Ch V Kamaraju
32	15U45A0217	K Aneesha
33	15U45A0218	K S Raj Kumar
34	15U45A0219	K Raj Kumar

	1.51115.4.0000	L.L.D.
35	15U45A0220	L Jai Ram
36	15U45A0221	M kiran Kumar Reddy
37	15U45A0222	M M Satyanarayana
38	15U45A0223	M Sowjanya
39	15U45A0224	M Tarun
40	15U45A0225	M Venkatesh
41	15U45A0226	N surya Kumar Yadav
42	15U45A0227	N Lakshman rao
43	15U45A0228	P Prameela devi
44	15U45A0229	P K Vinay Kumar
45	15U45A0230	P Tulasi rao
46	15U45A0231	Shaikh Ansar
47	15U45A0232	S Anusha
48	15U45A0234	U Nanji
49	15U45A0235	U Madhavi
50	15U45A0236	V S S V Ramadevi
51	15U45A0237	V Naga Bhaskar
52	15U45A0238	V Krishna
53	15U45A0240	D J Brahmaya
54	15U45A0241	I Nageswar Rao
55	15U45A0242	K Santosh Kumar
56	15U45A0243	M Ravi
57	15U45A0244	M Veena
58	15U45A0246	R Surya Narayana
59	15U45A0248	M Srinu
60	15U45A0250	S Satya Sai
61	15U45A0251	A Hari Babu
62	15U45A0252	M Nanji

8. Class Time Table and Individual Time Table

A Krishna Nag Individual TT – 2017-18

w.e.f.- 27/11/2017 Lecture Hall – 32 (IV Floor) Class Teacher -G.Jagadeesh(jagadeesh@diet.edu.in)(M.No.8500263833) Strength -62

Dov	9:00 -	10:00	ABF	11:00 -	11:50 -	'Z	1:30 - 2:20	2:20 - 3:10	3:10 -
Day	10:00	-10:50	KE K	11:50	12:40	C	1:30 - 2:20	2.20 - 3.10	4:00

MO N	UNIX	FACT S		DCS	SPM	GATE(RVS)	GATE(AKN)	PROJEC T
TUE	UNIX	FACT S		DCS	SPM	GATE(MRP)	GATE(ALD)	PROJEC T
WE D	FACT S	SPM		PROJEC T	UNIX	DCS	GATE(GJ)	PROJEC T
THU	FACT S	UNIX		SPM	PROJEC T	DCS	GATE(MRR)	PROJEC T
FRI	SPM	FACT S		UNIX	DCS	GATE(KV K)	GATE(DRC H)	PROJEC T
SAT	E-LIBRARY		LIBR	ARY	PR	OJECT WORK		

9. Tutorial Questions (Unit wise)

DADI INSTITUTE OF ENGINEERING AND TECHNOLOGY

 (Approved by A.I.C.T.E., New Delhi & Permanently Affiliated to JNTUK) NAAC Accredited Institute
 An ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 Certified Institute NH–16, Anakapalle, Visakhapatnam–531002, Andhra Pradesh

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PROGRAM : IV B.Tech., II-Sem., EEE., Section-A

ACADEMIC YEAR : 2017

COURSE NAME & CODE : FLEXIBLE AC TRANSMISSION SYSTEMS

COURSE INSTRUCTOR : Mr. A Krishna Nag, Assistant Professor

TUTORIAL -1

Date:

- 1. Draw the phasor diagrams & justify the statement "Injecting the voltage into transmission line perpendicular to line current mostly changes the active power"
- 2. (a) Explain the characteristics of high power devices used in FACTS(b) Classify different FACTS controllers. Explain them briefly
- 3. (a) What are the major issues in AC power transmission? Explain how they addressed using FACTS devices
 - (b) What is the relative importance of controllable parameters of the transmission system

TUTORIAL -2

- 1. Write about the operation of three phase full wave bridge converter with circuit diagram and waveforms.
- 2. Draw a neat diagram to explain the working principle and operation of a Current Source Converter
- 3. What are the effects of harmonics? Prove that the fundamental RMS component of a square wave ac voltage for a single-phase bridge converter is 0.9 times the dc voltage

TUTORIAL -3

Date:

(a) "For a radial line, the end of the line is the best location for compensator". Justify
 (b) Explain how midpoint voltage regulation helps in increasing the transmittable power of a line

Date:

- 2. (a) List different methods for controllable VAr generation.(b) Explain operation of Thyristor-Controlled Reactor (TCR) with necessary waveforms
- 3. (a) Discuss the improvement of transient stability with midpoint voltage regulation(b) Explain the power oscillation damping with shunt compensation

TUTORIAL -4

- 1. (a) Describe the transient stability enhancement with SVC and STATCOM with necessary diagrams
 - (b) Describe the power oscillation damping with SVC and STATCOM with necessary diagrams
- 2. (a) With circuit diagram and waveforms, explain the operation of TCR and TSR(b) Discuss the methods of controllable Var Generation
- 3. (a) Draw the block diagram of VAr reserve control(b) Briefly discuss the comparison between STATCOM and SVC with their characteristics

TUTORIAL -5

- (a) What are the objectives of series Compensation?
 (b) Explain the operation of GTO Thyristor Controlled Series capacitor?
- 2. (a) How to improve Voltage stability by using series Compensation?(b) Explain the operation & working of TSSC
- 3. (a) Explain Transient stability improvement by series compensation?(b) What are the basic control schemes for GCSC, TCSC & TSSC?

TUTORIAL --6

1. (a) Explain the Control structure of IPFC & UPFC?(b) Explain with block diagram for P & Q Control by UPFC?

- Compare the performance of LIDEC with Controlled Discourses
- 2. Compare the performance of UPFC with Controlled Phase angle regulators?
- 3. Explain how the real & reactive power flow control can be done by using UPFC Controller?

Signature of Course Instructor

Date:

Date:

Date:

11. Assignment Questions (Unit wise)

DADI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E., New Delhi & Permanently Affiliated to JNTUK) NAAC Accredited Institute

An ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 Certified Institute NH–16, Anakapalle, Visakhapatnam–531002, Andhra Pradesh

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING Assignment Questions [Unit Wise]'

Academic Year	:	2017
Name of the Faculty	:	A KRISHNA NAG
Designation	:	Assistant Professor
Department	:	Electrical & Electronics Engineering
Year/Semester	:	IV YEAR – II SEMESTER (EEE)
Course	:	B.Tech.

UNIT-1

- (a) Explain how power flow can be controlled in mesh networks
 (b) Discuss the benefits & opportunities of FACTS controllers
- 2. Draw the phasor diagrams & justify the statement "Injecting the voltage into transmission line perpendicular to line current mostly changes the active power"
- 3. (a) Write the limitations for loading capability of a transmission line(b) Explain dynamic stability considerations of a transmission interconnection with FACTS
- 4. (a) Explain the characteristics of high power devices used in FACTS(c) Classify different FACTS controllers. Explain them briefly
- 5. (a) What are the major issues in AC power transmission? Explain how they addressed using FACTS devices
 - (c) What is the relative importance of controllable parameters of the transmission system
- 6. (a) Explain the power flow in parallel circuits with FACTS(b) What is the need for transmission interconnections? Explain

- 1. Write about the operation of three phase full wave bridge converter with circuit diagram and waveforms.
- 2. Explain the operation of Single phase full wave bridge converter with circuit diagram and waveforms.
- 3. Evaluate the differences between VSC and CSC

- 4. Draw a neat diagram to explain the working principle and operation of a Voltage Source Converter
- 5. Describe about the square wave harmonics for a single phase bridge converter
- 6. Draw a neat diagram to explain the working principle and operation of a Current Source Converter
- 7. What are the effects of harmonics? Prove that the fundamental RMS component of a square wave ac voltage for a single-phase bridge converter is 0.9 times the dc voltage

UNIT-3

- (a) Explain the objective of reactive shunt compensation in transmission lines
 (b) With phasor diagrams & power-angle characteristics, explain two machine power system with ideal midpoint reactive compensation
- 2. (a) "For a radial line, the end of the line is the best location for compensator". Justify(b) Explain how midpoint voltage regulation helps in increasing the transmittable power of a line
- 3. (a) Illustrate midpoint voltage regulation for line segment by using shunt compensation(b) Discuss how to prevent voltage instability at the end of line by using shunt compensation
- 4. (a) List different methods for controllable VAr generation.(b) Explain operation of Thyristor-Controlled Reactor (TCR) with necessary waveforms
- 5. (a) Discuss the improvement of transient stability with midpoint voltage regulation(b) Explain the power oscillation damping with shunt compensation

UNIT-4

- 1. (a) Describe the transient stability enhancement with SVC and STATCOM with necessary diagrams
 - (b) Describe the power oscillation damping with SVC and STATCOM with necessary diagrams
- 2. (a) With circuit diagram and waveforms, explain the operation of TCR and TSR(b) With circuit diagram and waveforms, explain the operation of TCC and TSC
- 3. (a) Discuss the basic operating principle of switching converter type VAr generator with control scheme
 - (b) Discuss the methods of controllable Var Generation
- 4. (a) Draw the block diagram of VAr reserve control
 - (b) Briefly discuss the comparison between STATCOM and SVC with their characteristics
- 5. (a) Describe the transfer function and dynamic performance of SVC with necessary diagrams(b) Describe the transfer function and dynamic performance of STATCOM with necessary diagrams
- 6. (a) Explain the operating V-I characteristics of SVC and STATCOM
 - (b) What is regulation droop? Explain its significance

UNIT-5

- 1. (a) What are the objectives of series Compensation?(b) Explain the operation of GTO Thyristor Controlled Series capacitor?
- 2. (a) How to improve Voltage stability by using series Compensation?(b) Explain the operation & working of TSSC
- 3. (a) Explain the operation of GTO TCSC
 - (b) Explain the operation & working of SSSC
- 4. (a) Explain Transient stability improvement by series compensation?(b) What are the basic control schemes for GCSC, TCSC & TSSC?
- 5. (a) Write the functional requirements of Static Series Compensators(b) How the Power Oscillation damping can be reduced by using series compensation?

- (a) Explain the Control structure of IPFC?
 (b) Explain the Control structure of UPFC?
- 2. Compare the performance of UPFC with Controlled Phase angle regulators?
- 3. Explain how the real & reactive power flow control can be done by using UPFC Controller?
- 4. (a) Explain the Basic operating principle of UPFC Controller(b) Explain the Basic operating principle of IPFC Controller
- 5. (a) Explain with block diagram for P & Q Control by UPFC?(b) Basic function of shunt Converter?
- 6. Compare the performance of UPFC with Series compensators?

11. Quiz Questions/Objective type Questions (Unit wise)

DADI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E., New Delhi & Permanently Affiliated to JNTUK) **NAAC Accredited Institute** An ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 Certified Institute NH–16, Anakapalle, Visakhapatnam–531002, Andhra Pradesh

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

PROGRAM: IV B.Tech., II-Sem., EEE., Section – AACADEMIC YEAR: 2017-18COURSE NAME & CODE: Flexible AC Transmission SystemsCOURSE INSTRUCTOR: Mr A Krishna Nag, Assistant Professor

Quiz Questions/Objective type Questions

1. FACTS devices used in

- a) Generation
- b) AC transmission
- c) DC transmission
- d) None

2. Voltage control means

- a) Boosting the feeder voltage
- b) Reducing the line voltage under over voltage conditions
- c) Keeping the voltage level within the allowable limits.
- d) None

3. Line drop compensation corrects for

- a) Line drop lagging P.F b) voltage at leading P.F
- c) Transformer voltage drop d) voltage drop in feeder lines
- 4. Which are the shunt compensation devices?
 - a) TCSCb) SSSCc) UPFCd) SVC

5. Characteristics of a loss less line are

- a) Naturally loading with low power factor at sending end
- b) Naturally loading with unity power factor at both ends
- c) Naturally loading with zero power factor at both ends
- d) Naturally loading with zero power factors at receiving end Transposition of lines is done

6. Voltage regulation depends on ______.

- 7. FACTS devices are generally used for to compensate of the transmission line
- 8. FACTS devices generally deals with_____
- 9. Main Advantage of DC transmission over AC_____.
- 10. The power reversal involves reversal of_____
- 11. Main Advantage of DC transmission over AC
 - a) Maintenance of substations is easy
 - b) Switches & breakers have no limits
 - c) No commutation problems
 - d) Reduced corona loss & interference

12. Distortion is found in

- a) Lower trequencies c) Medium frequencies b) Audible frequencies
- d) Radio frequencies
- 13. In voltage source inverters (VSIs), the amplitude of the output voltage is
 - a) Independent of the load
 - b) Dependent only on L loads
 - c) Dependent on the load
 - d) None of the mentioned
- 14. In a VSI (Voltage source inverter)
 - a) The internal impedance of the DC source is negligible
 - b) The internal impedance of the DC source is very very high
 - c) The internal impedance of the AC source is negligible
 - d) The IGBTs are fired at 0 degrees.
- 15. Disadvantage of constant voltage transmission .
- 16. In a 3-phase VSI operating in square-wave mode, the output line voltage is free from_____
- 17. _____ materials is not used for transmission & distribution
- 18. Capacitance in equivalent circuit of a transmission line is due to_____.
- 19. In voltage source inverters (VSIs), the output currents _____
- 20. Increase in frequency of a transmission line causes
 - a) No change in line resistance
 - b) Increase in line resistance
 - c) Decrease in line resistance
 - d) Decrease in line series reactance
- 21. Transients in a system are caused due to
 - a) Resistance b) Inductance

22. When transmission line is terminated through a resistance equal to surge impedan	ance
--	------

- a) There is reflection
- b) There is reflection & refraction
- c) There is neither reflection nor refraction
- d) There is refraction.
- 23. What is the value of transient stability limit?
 - a) Higher than steady state stability limit
 - b) Lower than steady state stability limit
 - c) Depending upon the severity of load
 - d) All of these

24. Which among the following methods is used for improving the system stability?

- a) Increasing the system voltage
- b) Reducing the transfer reactance
- c) Using high speed circuit breaker
- d) All of these

25. Harmonic voltages are due to_____.

26. If terminating resistance greater than natural impedance of the line_____.

- 27. The accurate technique for analyzing transient circuits_____.
- 28. To eliminate the harmonics______ used.
- 29. The stability of the power system is not affected by_____.
- 30. STATCOM and SSSC will make____a) UPQCb) TCSCc) UPFCd) SVR
- 31. Losses in FC-TCR will vary in the range of _____.

 a) 0.5-0.9%
 b) 0.8-0.15%
 c) 0.5-0.12%
 d) 0.5-0.7%

32. TSC-TCR will compensate Q in which region_____.

- a) Capacitive-inductive
- b) Capacitive only
- c) Inductive only
- d) None of these

33. Thyristor firing angle should be between_____

34. Transmission efficiency increases as

- a) Voltage and power factor both increase
- b) Voltage and power factor both decrease
- c) Voltage increases but power factor decreases
- d) Voltage decreases but power factor increases
- 35. Functionality of FACTS devices_____.
- 36. SVC and STATCOM are _____ devices.
- 37. SVC stands for_____.
- 38. STATCOM stands for _____.
- 39. STATCOM is _____ regulating device.

- 40. The main Objective of series compensation
 - a) It improve the power factor
 - b) It reduces the fault currents
 - c) Reduce the voltage drop over long distance
 - d) None

41. TCSC is a

- a) Shunt compensation device
- b) Series compensation device
- c) Both A
- d) None of the above

42. SSSC is a

- a) Series compensation device
- b) Shunt compensation device
- c) Combined compensator
- d) Loss reduction device
- 43. Disadvantage with series compensation
 - a) Reduce the stability
 - b) Increase the voltage drop
 - c) Reduce the power factor
 - d) Increase in fault current
- 44. Characteristics of a loss less line are

a) Naturally loading with low power factor at sending end.

- b) Naturally loading with unity power factor at both ends
- c) Naturally loading with zero power factor at both ends
- d) Naturally loading with zero power factor at receiving end
- 45. TCSC is _____ device.
- 46. SSSC stands ______.
- 47. UPFC strands ______.

48. The location of series capacitor depends on ______ factors.

49. If load is more than surge impedance loading (SIL) ______ will increase in the line.

12. Question Bank (Descriptive Questions with BLOOMS Taxonomy)

DADI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E., New Delhi & Permanently Affiliated to JNTUK) NAAC Accredited Institute An ISO 9001:2008, 14001:2004 & OHSAS 18001:2007 Certified Institute NH–16, Anakapalle, Visakhapatnam–531002, Andhra Pradesh

NH-16, Anakapalle, Visaknapatnam-531002, Andria Pradesn

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

CO	LEVEL	Q.NO	QUESTION (5m each except Q2)
1	2	1	a) Explain how power flow can be controlled in mesh networksb) Discuss the benefits & opportunities of FACTS controllers
1	5	2	Draw the phasor diagrams & justify the statement "Injecting

			the voltage into transmission line perpendicular to line
			current mostly changes the active power" (10m)
1	2	3	a) Write the limitations for loading capability of a transmission
			line
			b) Explain dynamic stability considerations of a transmission
			interconnection with FACTS
1	5	4	a) Explain the characteristics of high power devices used in
			FACTS
			b) Classify different FACTS controllers. Explain them briefly
1	3	5	a) What are the major issues in AC power transmission?
			Explain how they addressed using FACTS devices
			b) What is the relative importance of controllable parameters of
			the transmission system
1	3	6	4. Explain the power flow in parallel circuits with FACTS
			5. What is the need for transmission interconnections? Explain

UNIT-2

CO	LEVEL	Q.NO	QUESTION (5 marks each)
2	2	1	Write about the operation of three phase full wave bridge converter
			with circuit diagram and waveforms.
2	5	2	Explain the operation of Single phase full wave bridge converter
			with circuit diagram and waveforms.
2	4	3	Evaluate the differences between VSC and CSC
2	5	4	Draw a neat diagram to explain the working principle and operation
			of a Voltage Source Converter
2	5	5	Describe about the square wave harmonics for a single phase bridge
			converter
2	3	6	Draw a neat diagram to explain the working principle and operation
			of a Current Source Converter
2	3	7	What are the effects of harmonics? Prove that the fundamental RMS
			component of a square wave ac voltage for a single-phase bridge
			converter is 0.9 times the dc voltage

CO	LEVEL	Q.NO	QUESTION (5 marks each)
2	2	1	a) Explain the objective of reactive shunt compensation in
			transmission lines
			b) With phasor diagrams & power-angle characteristics, explain two
			machine power system with ideal midpoint reactive compensation
2	5	2	a) "For a radial line, the end of the line is the best location for
			compensator". Justify
			b) Explain how midpoint voltage regulation helps in increasing the
			transmittable power of a line
2	5	3	a) Illustrate midpoint voltage regulation for line segment by using
			shunt compensation
			b) Discuss how to prevent voltage instability at the end of line by
			using shunt compensation
2	3	4	a) List different methods for controllable var generation.
			b) Explain operation of Thyristor-Controlled Reactor (TCR) with

			necessary waveforms
2	2	5	a) Discuss the improvement of transient stability with midpoint voltage regulationb) Explain the power oscillation damping with shunt compensation

UNIT-4

CO	LEVEL	Q.NO	QUESTION (5 marks each)
3	2	1	 a) Describe the transient stability enhancement with SVC and STATCOM with necessary diagrams b) Describe the power oscillation damping with SVC and STATCOM with necessary diagrams
3	5	2	 a) With circuit diagram and waveforms, explain the operation of TCR and TSR b) With circuit diagram and waveforms, explain the operation of TCC and TSC
3	2	3	a) Discuss the basic operating principle of switching converter type VAr generator with control schemeb) Discuss the methods of controllable Var Generation
3	5	4	a) Draw the block diagram of VAr reserve controlb) Briefly discuss the comparison between STATCOM and SVC with their characteristics
3	2	5	 a) Describe the transfer function and dynamic performance of SVC with necessary diagrams b) Describe the transfer function and dynamic performance of STATCOM with necessary diagrams
3	2	6	a) Explain the operating V-I characteristics of SVC and STATCOMb) What is regulation droop? Explain its significance

UNIT-5

CO	LEVEL	Q.NO	QUESTION (5 marks each)
3	4	1	What are the objectives of series Compensation?
			Explain the operation of GTO Thyristor Controlled Series capacitor?
3	4	2	A) How to improve Voltage stability by using series Compensation?
			B) Explain the operation & working of TSSC
3	2	3	A) Explain the operation of GTO TCSC
			B) Explain the operation & working of SSSC
3	4	4	A) Explain Transient stability improvement by series compensation?
			B) What are the basic control schemes for GCSC, TCSC & TSSC?
3	4	5	A) Write the functional requirements of Static Series Compensators
			B) How the Power Oscillation damping can be reduced by using
			series compensation?

COLEVELQ.NOQUESTION (5 marks each)	
------------------------------------	--

4	5	1	A) Explain the Control structure of IPFC?				
			B) Explain the Control structure of UPFC?				
4	2	2	Compare the performance of UPFC with Controlled Phase angle regulators?				
4	5	3	Explain how the real & reactive power flow control can be done by using UPFC Controller?				
4	2	4	A)Explain the Basic operating principle of UPFC ControllerB)Explain the Basic operating principle of IPFC Controller				
4	4	5	A) Explain with block diagram for P & Q Control by UPFC?B) Pagia function of shunt Converter?				
			B) Basic function of shunt Converter?				
4	4	6	Compare the performance of UPFC with Series compensators?				

REVISED Bloom's Taxonomy Action Verbs

Definitions I	. Remembering	II. Understanding	III. Applying	IV. Analyzing	V. Evaluating	VI. Creating
Definition d l t c	Exhibit memory of previously learned material by recalling facts, terms, basic concepts, and answers.	Demonstrate understanding of facts and ideas by organizing, comparing, translating, interpreting, giving descriptions, and stating main ideas.	Solve problems to new situations by applying acquired knowledge, facts, techniques and rules in a different way.	Examine and break information into parts by identifying motives or causes. Make inferences and find evidence to support generalizations.	judgments about information, validity of ideas, or quality of work based on a set of criteria.	Compile information together in a different way by combining elements in a new pattern or proposing alternative solutions.
	Choose Define Find How Label List Match Name Omit Recall Relate Select Show Spell Tell What When Where Which Who Why	 Classify Compare Contrast Demonstrate Explain Extend Illustrate Infer Interpret Outline Relate Rephrase Show Summarize Translate 	 Apply Build Choose Construct Develop Experiment with Identify Interview Make use of Model Organize Plan Select Solve Utilize 	 Analyze Assume Categorize Classify Compare Conclusion Contrast Discover Dissect Distinguish Divide Examine Function Inference Inspect List Motive Relationships Simplify Survey Take part in Test for Theme 	 Agree Appraise Appraise Assess Award Choose Compare Conclude Criteria Criticize Decide Deduct Defend Determine Disprove Estimate Evaluate Evaluate Explain Importance Influence Influence Judge Justify Mark Measure Opinion Perceive Priorize Prove Rate Recommend Support Value 	 Adapt Build Change Choose Combine Compile Compose Construct Create Delete Design Develop Discuss Elaborate Estimate Formulate Happen Imagine Improve Invent Make up Maximize Modify Original Original Original Original Predict Propose Solution Solve Suppose Test Theory

Course Material

- 1. <u>https://www.researchgate.net/publication/271743876_Flexible_AC_Transmission_System_Control</u> <u>lers_A_Review</u>
- 2. https://www.slideshare.net/udaywankar/flexible-ac-transmission-system-43062640
- 3. https://www.slideshare.net/udaywankar/flexible-ac-transmission-system-43062624
- $4. \ \underline{https://www.slideshare.net/shimireji/flexible-ac-transmission-facts}$
- 5. https://slideplayer.com/slide/6028821/
- 6. <u>https://www.youtube.com/watch?v=ZEbDeDochWk</u>
- 7. <u>https://www.youtube.com/watch?v=GVxY3nE5mO8&list=PLLy_2iUCG87AVyRAN4QwVQrC8</u> <u>vSg1vWa6</u>
- 8. <u>https://www.youtube.com/watch?v=aYNQu7ClIh4</u>
- 9. https://www.scientific.net/MSF.670.399
- 10. https://ieeexplore.ieee.org/abstract/document/206621