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Abstract.Theaim of this paper is to introduce a new class of closed sets
namelyNanog**-closed sets in Nano topological spaces and study some of their
properties.The relationship between these sets with other types of closed sets was also
discussed in this paper.
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1. INTRODUCTION

Generalized closed sets were introduced by N. Levine [1] as a super class of closed
sets in 1970.Using these closed sets many authors introduced new concepts in topological
spaces.Nano topological spaces were introduced by Lellis Thivagar [2].The elements of
aNano topological space are called Nano open sets. Nano closed sets, Nano interior and
Nano closure were also introduced [3]. Bhuvaneswari [4-6] introduced Nano generalized
closedset,Nano « generalized closed set, Nano g « closed set, Nano gr closed set and Nano rg
closed set in Nano topological spaces. V.Rajendran et al. [7, 8] introduced and studied Nano
generalized star closed sets in Nano topological spaces. With this inspiration, new class of
closed sets namely Nano g**-closed sets were introduced in Nano topological spaces and
their properties, relationship with other types of closed sets were studied in this paper.

2. PRELIMINARIES

Definition 2.1. [1]A subset A of a topological space (X,r) is calleda generalized closed set

(briefly g-closed)if cl( A) =V whenever AcV and V is open in (X,7).The complement of
a g-closed set is a g-open set.

Definition 2.2. [9] A subset A of a topological space (X,r) is calleda generalized star closed

set (brieflyg*-closed) if cl(A)cV whenever AcV and Vis g-open in (X,7).
The complement of a g*-closed set is a g*-open set.
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Definition 2.3. [2]Let U be a non-empty finite set of objects called the universe and R be an
equivalence relation on U named as indiscernibility relation. Then U is divided into disjoint
equivalence classes. Elements belonging to the same equivalence class are said to be

indiscernible with one another. The pair (U , R) is said to be the approximation space.
Let X cU. Then,

Q) The lower approximation of X with respect to R is the set of all objects denoted by
Ly (X).It is defined as Ly (X)=[J{R(x):R(x)<= X} where R(x) denotes the

xeU
equivalence class determined by x eU .
(i) The upper approximation of X with respect to R is the set of all objects denoted by

Ug (X).Itis defined as Uy (X ) =|J{R(X):R(Xx)n X =@} where R(X) denotes the

xeU
equivalence class determined by xeU .
(ili)  The boundary region of X with respect to R is the set of all objects which can be

classified neither as X nor as not-X with respect to R and it is denoted by B (X).Itis
defined as By (X )=Ug(X)—-Ls(X).

Property 2.4.[2] If(U , R) is an approximation space and X,Y cU , then
LLi(X)= X cUg(X))

Definition 2.5.[2] Let U be the universe, R be an equivalence relation on U, X cU and
72 (X)={U,@,U, (X),Lg (X), By (X)}.Then, 7, (X) satisfies the following.

(i) U, D ery(X)

(ii) The union of the elements of any sub-collection of 7, (X )isinz, (X).

(iii) The intersection of the elements of any finite sub-collection of 7, (X )is inz,(X)
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The setz, (X ) is a topology on U called the Nano topology on U with respectto X .

We call (U,7,(X))as a Nano topological space.The elements of 7, (X )are called Nano
open sets. The complements of Nano open sets are called Nanoclosed sets.

Definition 2.6.[2] Let(U, 7, (X)) be a Nano topological space and AcU , then

(i) The Nano interior of Ais defined as the union of all Nano open subsets of A and is
denoted by Nint(A). Thatis, Nint(A)is the largest Nano open subset of A.

(if) The Nano closure of A is defined as the intersection of all Nano closed sets containing A
and is denoted by Ncl (A). Thatis, Ncl(A)is the smallest Nano closed set containing A.

Definition 2.7. [4]A subset A of a Nano topological (U, z, (X ))is called,

(i) Nano generalized closed set (briefly Ng-closed) if Ncl (A) cU whenever AcU

and U is a Nano open set.
(ii) Nano g*-closed set (briefly Ng*-closed) if Ncl(A)cU whenever AcU and

U is a Nano generalized open set.

3. NANO g**-CLOSED SETS

Throughout this paper(U,rR(X)) is a Nano topological space with respect to X

where X cU, Ris an equivalence relation on U and U/R denotes the family of
equivalence classes of U by R.

We define the following closed set in a Nano topological space (U, 7, (X )).

Definition 3.1.A subset A of a Nano topological space (U,TR(X)) is called a Nano g**-

closed set (briefly Ng**—closedset) if Ncl(A)cU whenever AcUand U is a
Ng*—open set .

Example 3.2.Consider the set U ={a,b,c,d} with U/R={{a},{b,d}.{c}}. LetX ={a,b}
and 7, (X)={U,@,{a},{b,d}.{a,b,d}} .Then, (U,z,(X)) isa Nano topological space.

Consider the subset A={a,b,c}.The Ng*-openset containing A is only U and
Ncl(A)=U. Hence A={a,b,c} isa Ng**—closed set .

Theorem 3.3. In a Nano Topological space (U,rR(X))if Ais Ng**—closed set, then
Ncl(A) — A contains no nonempty Ng*—closed set .
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Proof: Suppose Ais a Ng**—closed set in the Nano Topological space(U , rR(X)).
Let Z bea Ng*—closed set contained in NCI(A)—A.Then, Z < Ncl(A) and Zz A

This implies Ac Z°.But Z° is aNg*—openset. Since A is a Ng**-closed set,
Ncl(A) < Z°which implies Z < [Ncl(A)] .

Now, Z < Ncl(A) andalsoZ < [Ncl(A)]" = Z = Ncl(A)~[Ncl(A)] =2 =9.
This shows that Ncl(A) — Acontains no nonempty Ng*—closed set .

Theorem 3.4. If A and B are Ng**—closed setsin a Nano Topological space(U , rR(X)),
then AuUBisa Ng**—closed set .

Proof: Let V be a Ng*—open setcontaining AUB . Itis clear that Ac AuBand BCc AuB
and hence AcV,BcV.Since A and B are Ng**-closed sets, Ncl(A)cV and

Ncl(B)<V. So, Ncl(A)UNcl(B)<V. But, Ncl(AuUB)=Ncl(A)uNcl(B) and hence
Ncl(AUB)cV . This shows that AU B is aNg**—closed set in(U, 7 (X)).

Theorem 3.5. If A is a Ng**—closedsetand Ac B Ncl(A) then,B is also a
Ng**—closed set .

Proof: Let V be a Ng*—openset containing B.Since, Ac B, V is a Ng*—open set
containing A also. But, A isa Ng**—closed set and hence, Ncl(A)cV .

Now, B < Ncl(A) = Ncl(B) < Ncl(A)= Ncl(B)cV .

This proves the theorem.

Theorem 3.6.Every Nano closed set is a Ng**—closed set .

Proof: Let A be a Nano closed set and V be a Ng*—open set containing A.Since A is a
Nano closed set, Ncl(A) = A.This implies, Ncl(A) —V proving that A isa Ng**—closed set.

Remark 3.7.The converse of the above theorem need not be true as shown in the following
example.

Example 38.Let U={ab,cdjwith U/R={{a}{c},{b,d}}.Let X ={ab}and
7.(X)={U,2,{a},{b,d} ,{a,b,d}}. Then, (U,7,(X)) is a Nano topological space.

In this space,
v The Nano closed sets are {U,@,{b,c,d}.{a,c}.{c}}.

v' The Ng*-open sets are {U,&,{d},{b}.{a}.{a,b},{b.d}.{a,b,d}.{a,d}}.
Consider the subset A= {a,b,c} .The Ng*-—open set containing Ais only U and Ncl(A)=U.
Hence A={a,b,c} isa Ng**—closed set. But it is not a Nano closed set.
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Theorem 3.9. Every Ng*—closed set is a Ng**—closed set .

Proof: Let A be a Ng*—closed setand V be aNg*—open set containing A.Since, every
Ng *—open setis a Nano generalized open set,V is a Nano generalized open set containing A.
But, Ais a Ng*—closed set set. So, Ncl(A) <V .This shows that A isa Ng**—closed set.

Remark 3.10.The converse of the above theorem need not be true as shown in the following
example.

Example 3.11. Consider the set U ={a,b,c}withU/R={{a},{b,c}}. Let X ={a,c}.
By the definition consider 7, (X)={U,@,{a},{b,d}.{a,b,d}} .Then, (U,z;(X))is a Nano

topological space.
In the space (U, z, (X)),

v The Nano closed sets are{U,@,{a,c},{b,c},{a,b} {a} ,{b}}
v The Nano generalized closed sets are {U,@,{a,c},{b,c},{a,b},{a},{b}}
v' The Nano g*- closed sets are {U,@,{a},{b,c},{a,b}}
v" The Nano g**- closed sets are {U,@,{a,c},{b,c},{a,b},{a},{b}}
The subset {a,c} isa Ng**—closed set, but it is not a Ng *—closed set .

Theorem 3.12.For each aeU, either {a} is a Ng*—closedsetor {a}’ is a
Ng**—closed setinz; (X).

Proof: Suppose for each a€U , {a} isnota Ng*—closed setinz, (X ).Then, {a}* is not a
Ng *—open setinz, (X ).This implies, the only Ng*-open setcontaining {a}° is U.

Hence, Ncl({a}c)gu. This shows that {a}° isa Ng**—closed set.

4. CONCLUSION

In the present paper, new class of sets namely Nanog**-closed sets was introduced in
a Nano topological space.Some of their properties and the relationship between these sets
with other types of closed sets were discussed.
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