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Abstract— Particle Swarm Optimization (PSO) is a heuristic global 

optimization method and also an optimization algorithm, which is 

based on swarm intelligence, is known to effectively solve large-scale 

nonlinear optimization problems. Differential Evolution (DE) is a 

very simple population-based evolutionary computation technique 

used for solving complex optimization problems. Power system State 

Estimation is one of the functions performed in the modern control 

centers. It is a technique which provides an estimate of system state 

which is a phasor of voltage magnitude and angles at different nodes 

of the system .State estimation (SE) is the backbone of energy 

management system (EMS) by playing important role of monitoring 

and control of power system. Both Particle swarm Optimization & 

Differential Evolution technique are well suited for many problems in 

the powers area, including state estimation. This paper presents an 

overview of the Weighted Least Squares (WLS) State Estimation 

Problem. It also presents the comprehensive description of Particle 

swarm optimization and Differential evolution   algorithm. A 

methodology for solving the Power System State Estimation problem, 

based on the Differential Evolution technique, is presented. This 

paper presents Particle Swarm Optimization & Differential Evolution 

technique based Weighted Least Squares State Estimation Problem 

for IEEE 14 and IEEE 30 bus system. 

 

Keywords— Particle Swarm Optimization (PSO), Differential 

Evolution (DE), State estimation (SE), Energy Management 

System(EMS), Weighted Least Squares (WLS).  

 

I.  INTRODUCTION  

Throughout the years, interconnected power systems have 

become much more complex and the task of securely 

operating the systems has become more difficult. To help 

avoiding major system failures and regional power blackouts, 

electric utilities have installed more extensive supervisory 

control and data acquisition (SCADA) systems throughout the 

network, which support computer-based systems at the energy 

control centers. The database created serves in supporting a 

wide range of applications, some to ensure the economic 

operation and others to assess the security of the system if 

transmission line outages or other equipment failures should 

occur. Before executing any security assessment program or 

taking any control action in the system, a reliable estimate of 

the existing state of the system must be determined. The state 

estimation program provides an estimate of the system state 

and a quantitative measure of how good that estimate is, 

before it is used for real time power flow calculations or for 

on-line security purposes [1].Besides some of the inputs 

typically required for conventional power flow calculations, 

additional measurements should be provided in order to 

counteract the effect of inaccurate (or missing) data due to 

instrument failures. A good state estimation will smooth out 

small random errors in measurements, detect and identify 

large measurement errors, and compensate for missing data 

[2]. Thus, gross errors detected in the course of state 

estimation are automatically filtered out, improving the 

reliability of the estimation. 

  

 Power system state estimation is one of the basic 

components of EMS (Energy Management system) which 

undertake the task for measurement correcting and lost data 

complementing, therefore state estimation has direct bearing 

on the reliability and stability of EMS, as well as the security 

of power system [3]. For the view of security of power system 

state estimation deserve great attention and gain much 

research since 1970. So that state estimation becomes one of 

the most reliable modules in EMS (Energy Management 

System) as well as indispensably tool for the system operator. 

There are different types of methods which are used in state 

estimation of power system i.e. Weighted Least Square State 

estimation, Normal equation method, Orthogonal 

transformation, Hybrid method, Normal equation method with 

constraints, Hachtel’s augmented matrix method, Observabilty 

Analysis, Bad Data Detection. Comparisons of these methods 

are done in the terms of Numerical stability, computational 

efficiency, implementation complexity [4, 5]. 

 

This paper describes State Estimation methods i.e. 

Weighted Least Square method for estimation of power 

system, doing so MATLAB is used. The proposed method has 

been tested on 14-bus power system and IEEE 30-bus power 

system. 

 

State estimation of power system is procedure which 

allow on line calculation of state variable for current scheme 

of electrical network on the basis of tele information. The 

obtained calculated method of state estimation of power 
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system is then used to solve various technological problems 

and effectively control the electric power system. In doing so 

the necessity arises based on a statistical criterion that 

estimates the true value of the state variables to minimize or 

maximize the selected criterion. The most widely used 

criterion is that of minimizing the sum of the squares of the 

differences between the estimated and "true" (i.e., measured) 

values of a function [6, 7]. 

 

The organization of paper is follows: Section II 

explains the role of state estimation in the power system 

including the function of state estimator and about the 

mathematical formulation of WLS method. Section III 

explains about the Particle Swarm Optimization and solution 

methodology for state estimation. Section IV explains about 

evolutionary computation technique known as Differential 

evolution and solution methodology for state estimation. 

 

II. ROLE OF STATE ESTIMATION IN POWER SYSTEM 
 

State Estimation (SE) technique determines the best 

estimate of the current actual power system state (voltages, 

angle, CB status, taps position etc.) based on available 

SCADA measurements, power system model and other data. 

Power flows in the transmission lines, transformers, and other 

equipment can then be derived. SE results are then used in 

network contingency analysis, security enhancement, optimal 

power flow, dynamic security analysis (including voltage and 

transient stability) and other applications [8, 9]. 

 

System monitoring is necessary to ensure the reliable 

operation of power grids, and state estimation is used in 

system monitoring to best estimate the power grid state 

through analysis of meter measurements and power system 

models . 

 

State estimation is a technique developed to provide 

an estimate of an unknown system state variable and to 

quantitatively analyze the estimated state variable before it is 

used for real time power -now calculations or on-line system 

security assessment. A state estimator is a data processing 

algorithm for converting redundant meter readings and other 

available information into an estimate of the state of an 

electric power system. It plays an essential part in every 

energy management system and also is a basic tool in ensuring 

the secure operation of a power system [10, 11]. 
 

A .STATE ESTIMATION PROBLEM FORMULATION 
 

  In the least-squares formulation, the objective is to 

minimize the sum of the squares of the difference between the 

measured value and the estimated value, weighted by the 

variance of their corresponding meter error. The mathematical 

formulation of the problem is [1], [2], [12]-[15]: 

 

 𝑀𝑖𝑛 𝐽 𝑥 =  
1

𝜎𝑖
2

𝑚
𝑖=1  𝑧𝑖 − 𝑖 𝑥  2                               (1) 

Where 

𝑥 : vector of unknown values to be estimated 

𝑚  : number of independent measurements 

𝜎𝑖
2  : variance of 𝑖𝑡  measurements 

𝑧𝑖              : 𝑖
𝑡  measurement value 

𝑖 𝑥        : function used to calculate the estimated value of  

                  the 𝑖𝑡     Measurement 

 

The standard deviation 𝜎𝑖  of each measurement 

provides a way to reflect the expected accuracy of the 

corresponding meter used. For instance, if the standard 

deviation is large, the measurement is relatively inaccurate, 

while a small standard deviation value indicates a small error 

range. 

 

 In the WLS formulation, the vector of state variables 

(x) usually includes the following states: 

1) Complex nodal voltages: 

 Voltage magnitudes 𝑉𝑖 . 

 Phase angles 𝛿𝑖 . 

2) Transformers turns ratio: 

 Turns ratio magnitudes  𝑇𝑖𝑗  . 

 Phase shift angles 𝜑𝑖𝑗  . 

When using only the complex voltages for a system 

of 𝑁buses, the state vector will have  2𝑁 − 1  elements, 

𝑁 bus voltage magnitudes and  𝑁 − 1 phase angles, since the 

phase angle of the reference bus is set to an arbitrary value 

(typically 0°). The state vector (x) will have the following 

form, assuming bus 1 is chosen as the reference bus. 

 

x= 𝛿2  𝛿3 … . 𝛿𝑛   𝑉1 𝑉2 ……𝑉𝑛  
𝑇                         (2) 

 

B.THE MEASUREMENT FUNCTIONS 

 

The most commonly used measurements in state estimation 

are the line power flows, bus power injections, bus voltages 

magnitudes, and line current magnitudes. The 𝑖 𝑥  functions 

will be nonlinear functions, except for the voltage 

measurements, whose 𝑖 𝑥  function is simply the voltage 

magnitude being measured. Thus, the corresponding 

measurement functions for each of the above types of 

measurements are stated as [14]-[15]: 

 Real and Reactive power injections: 

 𝑃𝑖 = 𝑉𝑖  𝑉𝑗  𝐺𝑖𝑗 𝑐𝑜𝑠𝛿𝑖𝑗 + 𝐵𝑖𝑗 𝑠𝑖𝑛𝛿𝑖𝑗  
𝑁𝑔

𝑗=1
                   (3) 

 𝑄𝑖 = 𝑉𝑖  𝑉𝑗  𝐺𝑖𝑗 𝑠𝑖𝑛𝛿𝑖𝑗 − 𝐵𝑖𝑗 𝑐𝑜𝑠𝛿𝑖𝑗  
𝑁𝑔

𝑗=1
                   (4) 

 Real and reactive power flow from bus 𝑖 to bus 𝑗: 

𝑃𝑖𝑗 =𝑉𝑖
2 𝑔𝑠𝑖 + 𝑔𝑖𝑗  − 𝑉𝑖𝑉𝑗 (𝑔𝑖𝑗 𝑐𝑜𝑠𝛿𝑖𝑗 + 𝑏𝑖𝑗 𝑠𝑖𝑛𝛿𝑖𝑗 )   (5)         
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𝑄𝑖𝑗 =−𝑉𝑖
2 𝑔𝑠𝑖 + 𝑔𝑖𝑗  − 𝑉𝑖𝑉𝑗 (𝑔𝑖𝑗 𝑠𝑖𝑛𝛿𝑖𝑗 − 𝑏𝑖𝑗 𝑐𝑜𝑠𝛿𝑖𝑗 )(6         

 Line current flow magnitude from bus 𝑖 to bus 𝑗 

                              𝐼𝑖𝑗 =
 𝑃𝑖𝑗

2 +𝑄𝑖𝑗
2

𝑉𝑖
                                     (7)     

                                                                     

Or ignoring the shunt admittance  𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑖  

        𝐼𝑖𝑗 =   𝑔𝑖𝑗
2 + 𝑏𝑖𝑗

2   𝑉𝑖
2 + 𝑉𝐽

2 − 2𝑉𝑖𝑉𝑗 𝑐𝑜𝑠𝛿𝑖𝑗    (8)     

 

Where: 

𝑉𝑖 ,, 𝛿𝑖          : Voltage magnitude and phase angle at  

                           bus𝑖 

𝛿𝑖𝑗           : phase angle difference between buses 

            𝑖 𝑎𝑛𝑑 𝑗 

𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗       : 𝑖𝑗𝑡element of the complex bus  

                          admittance Matrix 

𝑔𝑖𝑗 + 𝑗𝑏𝑖𝑗        : admittance of the series branch        

                           connecting    buses 𝑖 and 𝑗 

𝑔𝑠𝑖 + 𝑗𝑏𝑠𝑖        : admittance of the shunt branch        

                           connected at buses 𝑖 

𝑁𝐵           : total number of buses of the system  

                           being Studied 

 

C.WEIGHTED LEAST SQUARE METHOD 

This section describes the conventional WLS State 

Estimation equation in order to introduce basic concepts and 

notations. The non-linear equations relating the measurements 

and the state vector [16] are as follows, 

  

                 𝑧 =  𝑥𝑡 + 𝑤                                                         (9) 

 

Where, z is the (m x 1) measurement vector, h (x ) is 

the (m x 1) vector of non-linear functions, x is the (n x 1) true 

state vector, w is (m x 1) measurement error vector and 

number of measurements represented by the m and number of 

state variable is represented by the n. 

The estimate of the unknown state vector 𝑥𝑡  is 

designated by 𝑥  and is finding out by the minimizing the least 

squares function: 

 

 𝐽 𝑥 =  𝑧 −  𝑥  𝑇W 𝑧 −  𝑥                            (10)                                 

 

Where, 

  W=diagonal matrix whose elements are the inverse of 

the measurements variances, i.e. 
 

               𝑊 =  𝑐𝑜𝑣 𝑤  −1                                                        (11)  

 

 The condition for optimality is that the gradient of J 

vanishes the optimal solution 𝑥 , i.e.  

 

 𝐻𝑇 𝑥  𝑊 𝑧 −  𝑥                                                        (12) 

 

Where, Jacobian matrix H 𝑥  is, 
 

 𝐻 𝑥 =
𝜕

𝜕𝑥
 𝑥                                                                (13) 

 

 The estimate 𝑥  is obtained by solving the non-linear 

system 𝜕𝑗 𝜕𝑥 = 0  through the iteration process: 

 

                𝐺 𝑥𝑘 ∆𝑥𝑘 = 𝐻𝑇 𝑥𝑘 𝑊 𝑧 −  𝑥𝑘                     (14) 

 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥𝑘                                                  (15) 

 

 For 𝑘 = 0,1,2 ….until appropriate convergence is 

attained. 

Here the gain matrix G is, 

 

 𝐺 = 𝐻𝑇 𝑥𝑘 𝑊𝐻 𝑥𝑘                                                   (16) 

 

The estimation residuals are defined as: 

 

  𝑟 = 𝑧 −  𝑥                                             (17)                                                  

 

The covariance matrix of the residuals vector r is 

given by, 

 

𝑐𝑜𝑣 𝑟 = 𝑅 = 𝑊−1 − 𝐻 𝑥  𝐺−1 𝑥  𝐻𝑇 𝑥             (18) 
 

The sensitivity matrix is given by, 
  
𝜕𝑥  

𝜕𝑍
= 𝐺−1 𝑥  𝐻𝑇 𝑥  𝑊                                            (19) 

 

And the sensitivity matrix is given by [11]: 
 
𝜕𝑟

𝜕𝑧
= 1 − 𝐻 𝑥  𝐺−1 𝑥  𝐻𝑇 𝑥  𝑊 = 𝑅𝑊                 (20) 

 

 

Absence of state estimation solution causes the 

occurrence of cascading failures or blackouts in local and/or 

regional areas for considerable time periods. The robustness 

and reliability of state estimation is a critical issue for power 

utilities. The Weighted Least Square (WLS) method is the 

commonly used state estimation approach which is used in 

power industries [17, 18]. In this paper weighted least square 

algorithm along with flow chart is presented and applied for 

IEEE 14-bus power system and for IEEE 30-bus power 

system.  

 

The flow chart of WLS method is shown in figure-1: 
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                        Fig.1.Flow chart of WLS method.  

III.PARTICLE SWARM OPTIMIZATION 

 

Particle swarm optimization (PSO) is a population-

based optimization method first proposed by Kennedy and 

Eberhart in 1995, inspired by social behavior of bird flocking 

or fish schooling. The PSO as an optimization tool provides a 

population-based search procedure in which individuals called 

particles change their position (state) with time. In a PSO 

system, particles fly around in a multidimensional search 

space. 

During flight, each particle adjusts its position 

according to its own experience (This value is called pbest), 

and according to the experience of a neighboring particle 

(This value is called guest), made use of the best position 

encountered by itself and its neighbor (Fig. 2). 

 

 
 

Fig .2. Concept of searching point by PSO 

 

This modification can be represented by the concept 

of velocity. Velocity of each agent can be modified by the 

following equation: 

 
𝑣𝑘+1 = 𝑤. 𝑣𝑘 + 𝑐1𝑟𝑎𝑛𝑑 ∗  𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑘 + 𝑐2𝑟𝑎𝑛𝑑 ∗  𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑘                   
                                                                                                      (21) 

 

Using the above equation, a certain velocity, which gradually 

gets close to 𝑝𝑏𝑒𝑠𝑡 and 𝑔𝑏𝑒𝑠𝑡can be calculated. 

The current position (searching point in the solution space) 

can be modified by the following equation: 

 

                       𝑥𝑘+1 = 𝑥𝑘 + 𝑣𝑘+1,𝑘 = 1,2 … . 𝑛                     (22) 

 

Where  

𝑥𝑘  is current searching point , 𝑥𝑘+1 is modified searching 

point , 𝑣𝑘 is current velocity , 𝑣𝑘+1 is modified velocity of 

agent ,𝑉𝑝𝑏𝑒𝑠𝑡  is velocity based on 𝑝𝑏𝑒𝑠𝑡, 𝑉𝑔𝑏𝑒𝑠𝑡 is velocity 

based on 𝑔𝑏𝑒𝑠𝑡, 𝑛 is number of particles in a group, 𝑚 is 

number of members in a particle, 𝑝𝑏𝑒𝑠𝑡𝑖  is 𝑝𝑏𝑒𝑠𝑡of agent 𝑘, 

𝑔𝑏𝑒𝑠𝑡𝑖  is 𝑔𝑏𝑒𝑠𝑡 of the group, w is weight function for velocity 

of agent 𝑘 , 𝑐𝑖  is weight coefficients for each term . 

 

 c1 and c2 are two positive constants. 

  r1 and r2 are two randomly generated numbers with 

a range of [0,1] 

 𝑤 is the inertia weight and it is defined as a function 

of iteration index 𝑘as follows: 

 

         𝑤 𝑘 = 𝑤𝑚𝑎𝑥 −  
𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

𝑀𝑎𝑥 .𝐼𝑡𝑒𝑟
 ∗ 𝑘                (23) 

 

Where 𝑀𝑎𝑥. 𝐼𝑡𝑒𝑟, 𝑘 is maximum number of iterations 

and the current number of iterations,  respectively. 

       Start  

Select data (bus,line). 

Initialize the condition 𝑋 = 𝑋0  

Find H matrix 

Solve for 𝑍𝑖 − 𝐻 𝑥  

Take Inverse of G where 𝐺 = 𝐻𝑇𝑊𝐻G 

∆𝑥 = 𝐺−1𝐻𝑇𝑊 

Find the increment 

value of X.i.e 

 

Is Max .value 

of    ∆𝑥  < 𝜖 

Update the next value with 

increment 

Final 

value 

Update velocities and position of each particle. 

Evaluate the fitness value of each particle 

Current fitness< 

local best fitness? 
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To insure uniform velocity through all dimensions, the 

maximum velocity is as. 

                      𝑣𝑚𝑎𝑥 =
 𝑥𝑚𝑎𝑥 −𝑥𝑚𝑖𝑛  

𝑁
                                       (24) 

Where N is a chosen number of iterations.  
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Fig 3.Flow chart of PSO    

       

     

Step 1:  The initial particles are generated randomly in the 

range of upper and lower limits of number of generators. 

Step 2:  The objective function and fitness value of each 

particle with its pbest is calculated. The best among the pbest 

is denoted as gbest. 

Step 3: The velocity and position of each particle is 

updated according to equation (21) and (22) respectively. 

Step 4: The objective function of each particle is compared 

with its pbest. If the current value is better than pbest then 

pbest value is set equal to the current value and pbest position 

is set equal to the current position. 

Step 5:  If the current fitness value is better than the gbest, 

then update gbest to current best position and fitness value 

Step 6: Step 3 to 5 is repeated until the convergence 

criterion of maximum number of evaluations are met 

Step 7: The individual that generates the latest gbest is the 

optimal generation power of each unit with the minimum total 

generation cost. 
       

       

 IV. DIFFERENTIAL EVOLUTION (DE) 

 

Differential Evolution is an optimization algorithm 

that solves real-valued problems based on the principles of 

natural evolution [19]-[21]. DE uses a population P of size𝑁𝑝 ,  

composed of floating point encoded individuals that evolve 

over G generations to reach an optimal solution. Each 

individual 𝑋𝑖  is a vector that contains as many parameters as 

the problem decision variables D. The population size 𝑁𝑝  is an 

algorithm control parameter selected by the user and it 

remains constant throughout the optimization process. 

 

  𝑃 𝐺 =  𝑋𝑖
 𝐺 

, …… , 𝑋𝑁𝑝

 𝐺 
          (25) 

 

  𝑋𝑖
(𝐺)

=  𝑋1,𝑖
 𝐺 

, . . , 𝑋𝐷,𝑖
 𝐺 

 
𝑇
,𝑖 = 1, . . , 𝑁𝑝        (26) 

 

The optimization process in Differential Evolution is 

carried out with three basic operations: Mutation, Crossover 

and Selection. Differential Evolution starts by creating an 

initial population of 𝑁𝑝  vectors, with random values assigned 

to each decision parameter in every vector as defined by (27). 

 

𝑋𝑗 ,𝑖
 0 

= 𝑋𝑗
𝑚𝑖𝑛 + 𝜂𝑗  𝑋𝑗

𝑚𝑎𝑥 − 𝑋𝑗
𝑚𝑖𝑛                           (27) 

 

Where 𝑖 = 1, … , 𝑁𝑝  and 𝑗 = 1, … , 𝐷; 𝑋𝑗
𝑚𝑖𝑛 and 𝑋𝑗

𝑚𝑎𝑥 are the 

lower and upper bounds of the 𝑗𝑡  decision parameter and 

𝜂𝑗  is a uniformly distributed random number within [0, 1] 

generated a new for each value of j. 𝑋𝑗 ,1
 0 

is the 𝑗𝑡  parameter of 

the 𝑖𝑡  individual of the initial population. 

Initialize the positions and velocities of each particle 

Evaluate the fitness value of each particle 

For each particle set local best fitness=current fitness 

and local best position=current position 

 

 
Set global best fitness =min (local best fitness) 

Set global best fitness=current fitness 

Stopping 

criteria met? 

Update velocities and position of each particle 

Current fitness<local 

best fitness? 

Set local best fitness=current fitness 

Current fitness<global 

best fitness? 

Set global best fitness=current fitness 

Stop criteria 

met? 

Stop 

Start 

Evaluate the fitness value of each particle 
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The mutation operator creates mutant vectors  𝑋𝑡
′  by 

 perturbing a randomly selected vector  𝑋𝑎  with the 

difference of two other randomly selected vectors 
 𝑋𝑏𝑎𝑛𝑑 𝑋𝑐 . 

 

                𝑋𝑖
′ 𝐺 

= 𝑋𝑎
 𝐺 

+ 𝐹 𝑋𝑏
 𝐺 

− 𝑋𝑐
 𝐺 

 , 𝑖 = 1, . . , 𝑁𝑝         (28)   

 

Where 𝑋𝑎, 𝑋𝑏 𝑎𝑛𝑑 𝑋𝑐 are randomly chosen vectors ∈  1, . . 𝑁𝑝  

and 𝑎 ≠ 𝑏 ≠ 𝑐 ≠ 𝑖. 𝑋𝑎, 𝑋𝑏 𝑎𝑛𝑑 𝑋𝑐 are selected anew for each 

parent vector. The scaling constant (F) is an algorithm control 

parameter used to control the perturbation size in the mutation 

operator and improve algorithm convergence. 

 

The crossover operation generates trial vectors  𝑋𝑖
"  

by mixing the parameters of the mutant vectors with the target 

vectors   𝑋𝑖 , according to a selected probability distribution. 

 

𝑋𝑗 ,𝑖
" 𝐺 

=   
𝑋𝑗 ,𝑖

" 𝐺 
, 𝑖𝑓 𝜂𝑗

′ ≤ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑞

𝑋𝑗 ,𝑖
 𝐺 

, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
                         (29) 

 

 

Where 𝑖 = 1, … , 𝑁𝑝  and 𝑗 = 1, … , 𝐷;q is randomly chosen 

index ∈  1, . . 𝑁𝑝  that guarantees that the trial vector gets at 

least one parameter from the mutant vector; 𝜂𝑗
′ a uniformly 

distributed random number within [0, 1) generated anew for 

each value of j. Crossover constant 𝐶𝑅 is an algorithm control 

parameter  that controls the diversity of the population and 

aids the algorithm to escape from local optima. 

𝑋𝑗 ,𝑖
 𝐺 

, 𝑋𝑗 ,𝑖
′ 𝐺 

 𝑎𝑛𝑑 𝑋𝑗 ,𝑖
" 𝐺 

 are the 𝑗𝑡  parameter of the 𝑖𝑡 target 

vector, mutant vector, and trial vector at generation G, 

respectively. 

Finally, the selection operator forms the population 

by choosing between the trial vectors and their predecessors 

(target vectors) those individuals that present a better fitness or 

are more optimal according to (30).  

𝑋𝑗 ,𝑖
 𝐺+1 

=   
𝑋𝑖

" 𝐺 
, 𝑖𝑓 𝑓 𝑋𝑖

" 𝐺 
 ≤ 𝑓 𝑋𝑖

 𝐺 
 

𝑋𝑗 ,𝑖
 𝐺 

, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 , 𝑖 = 1, . . 𝑁𝑝  

 

                                                                              (30) 

This optimization process is repeated for several 

generations allowing individuals to improve their fitness as 

they explore the solution space in the search for optimal 

values. 

DE has three essential control parameters: Scaling 

Factor  𝐹 , Crossover Constant  𝐶𝑅  and Population Size 𝑁𝑃. 

The scaling factor is a value in the range (0, 2] that controls 

the perturbation in the mutation process. The crossover 

constant is a value in the range [0, 1] that controls the diversity 

of the population. The population size determines the number 

of individuals in the population and provides the algorithm 

enough diversity to search the solution space. 

A. Control Parameter Selection. 

The most common method used to select control 

parameters is parameter tuning. Parameter tuning adjusts the 

control parameters through experimentation until the best 

settings are determined. Good initial value ranges for strategy 

DE/rand/1/bin are F= [0.5, 0.6],𝐶𝑅 =  0.70.0.90 , 𝑁𝑝 =
 3𝐷, 8𝐷  where D is the dimension or number of control 

variables of the problem being solved [22]. 

In general, to avoid premature convergence of the DE 

algorithm, it is crucial that F be of sufficient magnitude to 

counter act this selection pressure. On the other hand, the 

scaling factor F should not be chosen too large, since the 

number of function evaluations increases as F increases. 

As mentioned previously, the crossover constant  𝐶𝑅  

controls the diversity of the population. Relatively high values 

of 𝐶𝑅 result in higher diversity and improved convergence 

speed. However, beyond a certain threshold value, the 

convergence rate may decrease or the population may 

converge prematurely. On the other hand, small values of 𝐶𝑅 

increase the possibility that the algorithm stagnates in local 

minima. 

The population size plays an important role in the 

algorithm convergence rate. Small population may cause a 

poor searching performance and stagnations in local minima. 

Large populations increase the possibility for finding optimal 

solutions at the expense of a large number of function 

evaluations. 

 

V. RESULTS. 

 
Particle Swarm Optimization and Differential Evolution based 

Weighted Least Square State Estimation is tested on IEEE 14 

bus system and IEEE 30 bus system. The true value of bus 

voltage for IEEE 14 bus system and estimated values of bus 

voltages with PSO and DE is tabulated in table.1. The true 

value of bus voltage for IEEE 30 bus system and estimated 

values of bus voltages with PSO and DE is tabulated in table2. 

                                 

Table.1 

Estimated states with PSO and DE for IEEE 14 Bus system. 

 

Bus no. True 

value V 

p.u 

PSO 

estimated 

Value V 

p.u 

DE 

estimated 

value V 

p.u 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

    1.0600 

    1.0450 

    1.0100 

    1.0000 

    1.0000 

    1.0700 

    1.0000 

    1.0900 

    1.0000 

    1.0600 

    1.0450 

    1.0100 

    0.9578 

    0.9614 

    1.0700 

    0.9919 

    1.0900 

    0.9763 

   1.0068 

    0.9899 

    0.9518 

    0.9579 

    0.9615 

    1.0185 

    0.9919 

    1.0287 

    0.9763 
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10. 

11. 

12. 

13. 

14. 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    0.9757 

    0.9931 

    1.0008 

    0.9939 

    0.9646 

    0.9758 

    0.9932 

    1.0009 

    0.9940 

    0.9647 

 

Table.2 

Estimated states with PSO and DE for IEEE 30 Bus 

system. 

 

Bus No. True 

value V 

(p.u) 

PSO 

estimated 

value V 

(p.u) 

DE 

estimated 

value V 

(p.u) 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

24. 

25. 

26. 

27. 

28. 

29. 

30. 

 

    1.0600 

    1.0430 

    1.0000 

    1.0600 

    1.0100 

    1.0000 

    1.0000 

    1.0100 

    1.0000 

    1.0000 

    1.0820 

    1.0000 

    1.0710 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0000 

    1.0600 

    1.0430 

    0.9479 

    1.0600 

    1.0100 

    0.9400 

    0.9292 

    1.0100 

    0.9672 

    0.9476 

    1.0820 

    0.9750 

    1.0710 

    0.9564 

    0.9496 

    0.9560 

    0.9445 

    0.9356 

    0.9311 

    0.9344 

    0.9332 

    0.9376 

    0.9336 

    0.9236 

    0.9275 

    0.9075 

    0.9400 

    0.9403 

    0.9181 

    0.9056 

    0.9865 

    0.9700 

    0.9474 

    0.9384 

    0.9335 

    0.9395 

    0.9287 

    0.9449 

    0.9667 

    0.9472 

    1.0093 

    0.9746 

    0.9954 

    0.9559 

    0.9491 

    0.9555 

    0.9441 

    0.9352 

    0.9306 

    0.9339 

    0.9328 

    0.9372 

    0.9331 

    0.9231 

    0.9270 

    0.9070 

    0.9395 

    0.9398 

    0.9177 

    0.9051 

 

         
 

Fig.4.comparision of Estimated values of bus 

voltages(V)  with PSO and DE for IEEE 14 bus system 

 

 
 Fig.4.comparision of Estimated values of bus 

Voltages (V) with PSO and DE for IEEE 30 bus system. 

 

 

VI.CONCLUSIONS. 

 
The paper proposed the Particle Swarm Optimization 

and Differential Evolution for Power system State Estimation.   

Particle Swarm Optimization and Differential Evolution 

algorithm technique has been applied to Weighted Least 

Square State Estimation. Estimated Bus voltages values 

obtained for IEEE 14 bus system and 30 bus system through 

Particle Swarm Optimization are nearer to True Bus voltage 

value compared to Differential Evolution. The results of 

estimated Voltage values obtained through PSO and DE for 

IEEE 14 bus system and IEEE 30 bus system are tabulated in 

Table.1 and Table.2 and respected graphs are plotted as shown 

in Figure 3 and Figure 4 . 
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