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Abstract- In this paper, a deep semantic segmentation of aerial imagery based on multi-modal data is discussed. given multi-

modal data composed of true orthophotos and the corresponding digital surface models (dsms), we extract a variety of 

handcrafted radiometric and geometric features which are provided separately and in different combinations as input to a 

modern deep learning framework. the latter is represented by a residual shuffling convolutional neural network (rscnn) 

combining the characteristics of a residual network with the advantages of atrous convolution and a shuffling operator to 

achieve a dense semantic labeling. via performance evaluation on a benchmark dataset, we analyze the value of different 

feature sets for the semantic segmentation task. the derived results reveal that the use of radiometric features yields better 

classification results than the use of geometric features for the considered dataset. furthermore, the consideration of data on 

both modalities leads to an improvement of the classification results. however, the derived results also indicate that the use of 

all defined features is less favorable than the use of selected features. consequently, data representations derived via feature 

extraction and feature selection techniques still provide a gain if used as the basis for deep semantic segmentation. 
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I. INTRODUCTION 
 

The semantic segmentation of aerial imagery in terms of 

assigning a semantic label to each pixel and thereby 
providing meaningful segments has been addressed in 

the scope of many recent investigations and applications. 

While the radiometric information preserved in an 

orthophoto can already be sufficient to distinguish 

specific classes, the geometric information preserved in 

the corresponding DSM might alleviate the separation of 

further classes, as each modality provides information 

about different aspects of the environment. 

 

Generally, the semantic segmentation of aerial imagery 

based on true orthophotos and the corresponding DSMs 
can be achieved via the extraction of handcrafted 

features. Nowadays, however, many investigations rely 

on the use of modern deep learning techniques. Some of 

these approaches also focus on using hand-crafted fea- 

tures derived from the true orthophotos or from their 

correspond- ing DSMs in addition to the given data as 

input to a deep learning technique. In this regard, the 

Normalized Difference Vegetation Index (NDVI) and the 

normalized Digital Surface Model (nDSM) are 

commonly used. Other kinds of hand-crafted features 

have however only rarely been involved so far although 

they might introduce valuable information for the 
semantic labeling task. In this paper, we focus on the 

deep semantic segmentation of aerial imagery based on 

multi-modal  

 

Data. We extract a diversity of handcrafted features from 

both the true orthophotos and their corresponding DSMs. 

Based on a separate and combined consideration of these 

radiometric and geometric features, we perform a 

supervised classification involving modern deep learning 

techniques. As standard deep networks (Krizhevsky et 

al., 2012; Simonyan and Zisserman, 2014) are composed 

of many layers to learn complex non-linear relationships, 
such networks tend to suffer from the vanishing gradient 

problem if they are very deep, i.e. the gradients 

backpropagated through the layers become very small so 

that the weights in early layers of the network are hardly 

changed.  

 

This, in turn, causes a decrease in the predictive accu- 

racy of the network and can be resolved by using a 

Residual Network (ResNet) (He et al., 2016a). Relying 

on the ResNet architecture originally intended to classify 

image patches, we present a modified ResNet architecture 

that allows a dense semantic image labeling.  
 

More specifically, we make use of the ResNet-34 ar 

chitecture and introduce both atrous convolution and a 

shuffling operator to achieve a semantic labeling for 

each pixel of the input imagery. We denote the resulting 

deep network as Residual Shuffling Convolutional 

Neural Network (RSCNN). Via performance evaluation 

on a benchmark dataset, we quantify the effect of 

considering the different modalities separately and in 

combination as input to the RSCNN. We observe that the 



 

 

© 2020 IJSRET 
3618 

International Journal of Scientific Research & Engineering Trends                                                                                                         
Volume 6, Issue 6, Nov-Dec-2020, ISSN (Online): 2395-566X 

 

 

additional extraction of different types of geometric 

features based on the DSM and the definition of 
corresponding feature maps for the RSCNN leads to an 

improvement of the classification results, and that the 

best classification results are achieved when using 

selected feature maps and not when using all defined 

feature maps. 

    

II. RELATED WORK 
 

For many years, the semantic segmentation of aerial 

imagery based on multi-modal data has typically been 

addressed by extracting a set of handcrafted features 

(Gerke and Xiao, 2014; Tokarczyk et al., 2015; 

Weinmann and Weinmann, 2018) and providing them as 

input to a standard classifier such as a Random Forest 
(Weinmann and Weinmann, 2018) or a Conditional 

Random Field (CRF) (Gerke, 2014). Due to the great 

success of modern deep learning techniques in the form of 

Convolutional Neural Networks (CNNs), however, many 

investigations nowadays focus on the use of such 

techniques for semantically segmenting aerial imagery as 

they tend to significantly improve the classification 

results. 

 

Regarding semantic image segmentation, the most popular 

deep learning techniques are represented by Fully 
Convolutional Networks (FCNs) (Long et al., 2015; 

Sherrah, 2016) and encoder- decoder architectures (Volpi 

and Tuia, 2017; Badrinarayanan et al., 2017). The latter 

are composed of an encoder part which serves for the 

extraction of multi-scale features and a decoder part which 

serves for the recovery of object details and the spatial 

dimension and thus addresses a more accurate boundary 

localization. A meanwhile commonly used encoder-

decoder structure has been proposed with the SegNet 

(Badrinarayanan et al., 2017).  

 

Specifically addressing semantic segmentation based on 
multi-modal data in the form of orthophotos and the 

corresponding DSMs, different strategies to fuse the multi-

modal geospatial data within such a deep learning 

framework have been presented (Marmanis et al., 2016; 

Audebert et al., 2016; Audebert et al., 2017; Liu et al., 

2017), while the consideration of semantically meaningful 

boundaries in the SegNet encoder-decoder architecture 

and also in FCN-type models has been addressed by 

including an explicit object boundary detector to better 

retain the boundaries between objects in the classification 

results (Marma- nis et al., 2018). As an alternative to 
involving a boundary detec- tor, it has been proposed to 

discard fully-connected layers (which reduce localization 

accuracy at object boundaries) and to additionally avoid 

the use of unpooling layers (which are more complicated 

and e.g. used in SegNet) (Chen et al., 2017).  In this paper, 

we investigate the value of different types of handcrafted 

features for the semantic segmentation of aerial imagery 

based on multi-modal data. We extract a diversity of hand-

crafted features from both the true orthophotos and their 

corresponding DSMs. Thereby, we involve hand-crafted 
radiometric features such as the NDVI and one of its 

variants, but also radiometric features derived from 

transformations in analogy to the definition of color 

invariants (Gevers and Smeulders, 1999). Furthermore, we 

involve hand-crafted geometric features in the form of the 

nDSM (Gerke, 2014) and features extracted from the 3D 

structure tensor and its eigenvalues. 

 

III. METHODOLOGY 
 

The proposed methodology addresses the semantic 

interpretation of aerial imagery by exploiting data of 

several modalities (Section 3.1) which are provided as 

input to a deep network (Section 3.2). The result is a dense 

labeling, i.e. each pixel is assigned a respective semantic 

label. 

 

1. Feature Extraction 
Given a true orthophoto and the corresponding DSM on a 

regular grid, the information may be stored in the form of a 

stack of feature maps (i.e. images containing the values of 

a respective feature on a per pixel level), whereby three 

feature maps correspond to the spectral bands used for the 

orthophoto and one fea- ture map corresponds to the DSM. 

Further information can easily be taken into account by 

adding respective feature maps. In total, we define eight 

radiometric features (Section 3.1.1) and eight geometric 

features (Section 3.1.2) for the given regular grid. Based 

on these features, we define corresponding feature maps 

which serve as input to a CNN. 
 

2.  Radiometric Features  

In our work, we assume that the spectral bands used for 

the orthophoto comprise the near-infrared (NIR), red (R) 

and green (G) bands (Cramer, 2010; Rottensteiner et al., 

2012; Gerke, 2014). Accordingly, we define the 

reflectance in the near-infrared domain, in the red domain 

and in the green domain as features denoted by the 

variables RNIR, RR and RG, respectively. In addition, we 

consider color invariants as features. In analogy to the 

definition of color invariants derived from RGB imagery 
to improve robustness with respect to changes in 

llumination, we consider normalized colors which 

represent a simple example of such color invariants 

 

3. Geometric Features  

In addition to the radiometric features, we extract a set of 

geometric features. The most intuitive idea in this regard is 

to take into account that the heights of objects above 

ground are more informative than the DSM itself. 

Consequently, we use the DSM to calculate the 

normalized Digital Surface Model (nDSM) via the 

approach presented in (Gerke, 2014). This approach relies 
on first classifying pixels into ground and off-ground 

pixels using the LAStools software. Subsequently, the 

height of each off-ground pixel is adapted by subtracting 
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the height of the closest ground point. Besides the nDSM, 

we involve a set of local shape features extracted from the 
DSM as geometric features. 

 

4. Supervised Classification 

For classification, we focus on the use of modern deep 

learning techniques in the form of convolutional neural 

networks, where standard networks like AlexNet 

(Krizhevsky et al., 2012) and the VGG networks 

(Simonyan and Zisserman, 2014) are composed of a 

collection of convolutional layers, max-pooling layers and 

activation layers followed by fully-connected 

classification layers. The use of deep networks with many 

layers allows learning complex non-linear relationships, 
yet it has been found that the performance of very deep 

networks tends to decrease when adding further layers via 

simply stacking convolutional layers. 

 

5. Atrous Convolution  

As the field-of-view of the deeper layers will shrink after 

removing RRLs, we involve atrous convolution (Chen et 

al., 2016) which can be used to compute the final CNN 

responses at an arbitrary resolution through re-purposing 

the networks trained on image classification to semantic 

segmentation and to enlarge the field-of-view of filters 
without the need for learning any extra parameters. 

 

6. Shuffling Operator  

To achieve a dense prediction, we involve a shuffling 

operator to increase the resolution by combining feature 

maps in a periodic shuffling manner. The concept of the 

shuffling operator has been originally introduced for super     

resolution (Shi et al., 2016) and it aims at the upscaling of 

feature maps. Inspired by this idea, it has been proposed to 

introduce this operator for the semantic segmentation of 

aerial imagery (Chen et al., 2018), and respective 

experiments reveal that the use of a shuffling operator 
improves the predictive accuracy through forcing 

networks to learn upscaling. 

 

IV. EXPERIMENTAL RESULTS 
 

In the following, we first describe the used dataset 
(Section 4.1). Subsequently, we summarize the conducted 

experiments (Section 4.2) and, finally, we present the 

derived results (Section 4.3).  

 

1. Dataset 

For our experiments, we use the Vaihingen Dataset 

(Cramer, 2010; Rottensteiner et al., 2012) which was 

acquired over a relatively small village with many 

detached buildings and small multi-story buildings. This 

dataset contains 33 patches of different sizes, whereby the 

given regular grid corresponds to a ground sampling 

distance of 9 cm. For 16 patches, a very high-resolution 
true orthophoto and the corresponding DSM derived via 

dense image matching techniques are provided as well as a 

referencelabeling with respect to six semantic classes 

represented by Impervious Surfaces, Building, Low 

Vegetation, Tree, Car and Clutter/ Background. According 
to the specifications, the class Clutter/ Background 

includes water bodies and other objects such as containers, 

tennis courts or swimming pools. We use 11 of the labeled 

patches for training and the remaining 5 labeled patches 

for evaluation. 

 

4.2 Experiments 

For each orthophoto and the corresponding DSM, we 

extract the set of hand-crafted features (cf. Section 3.1). 

Based on the orthophoto, we derive eight feature maps 

containing radiometric information with respect to the 

reflectance in the near-infrared (NIR), red (R) and green 
(G) domains, the normalized nearinfrared (nNIR), 

normalized red (nR) and normalized green (nG) values, 

the Normalized Difference Vegetation Index (NDVI) and 

the Green Normalized Difference Vegetation Index 

(GNDVI). Based on the DSM, we derive eight feature 

maps containing geometric information with respect to the 

normalized Digital Surface Model (nDSM), linearity (L), 

planarity (P), sphericity (S), omnivariance (O), anisotropy 

(A), eigenentropy (E) and change of curvature (C).  

 

 
 

         
 

         
 

       
 

Figure 1. Visualization of the used Radiometric 

Information 
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Figure 2. Comparision of semantic segmentation between 

only Radimetric, only Geometric and both features 

 

V.CONCLUSION 
 

In this paper, we have focused on the use of multi-modal 
data for the semantic segmentation of aerial imagery. 

Using true orthophotos, the corresponding DSMs and 

further representations derived from both of them, we have 

defined different sets of feature maps as input to a deep 

network.For the latter, we have proposed a Residual 

Shuffling Convolutional Neural Network (RSCNN) which 

combines the characteristics of a Residual Network with 

the advantages of atrous convolution and a shuffling 

operator to achieve a dense semantic labeling. Via 

performance evaluation on a benchmark dataset, we have 

analyzed the value of radiometric and geometric features 

when used separately and in different combinations for the 
semantic segmentation task. 

 

The derived results clearly reveal that true orthophotos are 

better suited as the basis for classification than the DSM, 

the nDSM and different representations of geometric 

information and their combination. However, the 

combination of both radiometric and geometric features 

yields an improvement of the classification results. The 

derived results also indicate that some features such asthe 

NDVI are less suitable, and that the use of many features 

as the basis for semantic segmentation can decrease the 
predictive accuracy of the network and might thus suffer 

from the Hughes phenomenon. We conclude that selected 

data representations derived via feature extraction and 

feature selection techniques provide a gain if used as the 

basis for deep semantic segmentation. 
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