
 

 

 

                        Journal of critical reviews                                                                                                                                      274 
 

 

Journal of Critical Reviews 
ISSN- 2394-5125                                       Vol 6, Issue 5, 2019 

Review Article 

IMPLEMENTATION OF UKF FOR TRACKING AN UNDERWATER TARGET USING 
DUNKING SONAR 

 
1Sujeeth Sai B,  2Prashanth Ch, 3Koteswara Rao S, 4Kausar Jahan 

 
Department of Electronics and Communication Engineering, 

Koneru Lakshmaiah Education Foundation, Guntur, India 
sujeeth.sai@gmail.com, prashanthchikatamalla@gmail.com, skrao@kluniversity.in, kausar465@ieee.org 

 
Received: 08.10.2019                                Revised: 10.11.2019                         Accepted: 12.12.2019 

Abstract 
In underwater, dunking sonar generates underwater target range and bearing measurements and the same information is 
communicated to a helicopter for further processing. The noise corrupted measurements are processed to estimate target motion 
parameters using online Unscented Kalman Filter. These estimates are useful to find out the track of the target, once the target 
direction is known then the weapon will release on to the target. Simulation results using Matlab are shown in this paper. 
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INTRODUCTION 
Target motion analysis (TMA), in two-dimensional scenario is 
mostly used in underwater atmosphere [1]. Dunking sonar is 
positioned in the sea from a helicopter in hovering mode to find 
out the path of the target submarine in sea waters. The sonar in 
active mode finds out target bearing and range measurements. 
These are communicated to the helicopter signal processing 
system through a cable. It is to assume that the target moves with 
uniform velocity and the observer is stand still. Observer 
estimates the target range, bearing, course and speed using the 
noise corrupted bearing and range measurements [2-3]. 
Unscented Kalman filter is used to smooth the measurements 
and to estimate course and speed the target. Using the estimated 
parameters, weapon pre-set parameters are calculated in 
helicopter fire control system to release weapon on the target. 
Now a days, signal processing technology is developing in vast 
areas in all engineering fields [4-10]. 

Mathematical modelling of target state vector, measurements 
and Kalman filter in brief are described in section2. Section 3 
deals with implementation of the algorithm and generation of 
target motion measurements in simulation environment.  In 
section 4 results obtained in simulation are described. 
 
MATHEMATICAL MODELLING 
Modelling of State Vector and Measurements 
Let 𝑋𝑆(𝜅) be state vector, given as:  

𝑋𝑆(𝜅) = [𝑥̇(𝜅) 𝑦̇(𝜅) 𝑅𝑥(𝜅) 𝑅𝑦(𝜅)]𝑇    (1) 

Here 𝑥̇(𝜅) and 𝑦̇(𝜅) are target velocity and 𝑅𝑥(𝜅) and 𝑅𝑦(𝜅) are 

range components. The State equation of the target is:  

𝑋𝑠(𝜅 + 1) =  Ø(𝜅 + 1 𝜅)𝑋𝑠⁄ (𝜅) + 𝑏(𝜅 + 1) + 𝜔(𝜅)   (2) 

Here 𝜔(𝜅)  is plant noise and transient matrix Ø(𝜅 + 1 𝜅⁄ )  is 
given as: 

Ø(𝜅 + 1/𝜅) = [

1 0 0 0
0 1 0 0
𝑡 0 1 0
0 𝑡 0 1

]   (3) 

Here 𝑡  is measurement interval and 𝑏(𝜅 + 1)  is deterministic 
matrix:  

𝑏(𝜅 + 1) =

[
 
 
 

0
0

−(𝑥0(𝜅 + 1) − 𝑥0 (𝜅))

−(𝑦0(𝜅 + 1) − 𝑦0 (𝜅))]
 
 
 
𝑇

   (4) 

Here 𝑥0 (𝜅)  and 𝑦0 (𝜅)  are observer position components. 
Measurement matrix 𝑍(𝜅) is given as: 

𝑍(𝜅)  = [
𝐵𝑚(𝜅)
𝑅𝑚(𝜅)

]            (5)

 Here 𝐵𝑚(𝜅) and 𝑅𝑚(𝜅) are measurements and they are defined 
as: 

𝐵𝑚(𝜅) = 𝐵(𝜅) + 𝛾(𝜅)     (6) 

𝑅𝑚(𝜅) = 𝑅(𝜅) + 𝜂(𝜅)         (7) 

Where bearing and range is given as 𝐵(𝜅) and 𝑅(𝜅): 

 𝐵(𝜅) =   𝑡𝑎𝑛−1 (
𝑅𝑥(𝜅)

𝑅𝑦(𝜅)
)            (8) 

𝑅(𝜅) =  √𝑅𝑥
2(𝜅) + 𝑅𝑦

2(𝜅)        (9) 

𝜂(𝜅)  and 𝛾(𝜅)  are the noises which are uncorrelated. The 
equation of measurement is:  

𝑍(𝜅) = 𝐻(𝜅)𝑋𝑠(𝜅) + 𝜉(𝜅)         (10) 

Here, 𝐻(𝜅) = [
0 0

cos 𝐵̂(𝜅)

𝑅̂(𝜅)

− sin 𝐵̂(𝜅)

𝑅̂(𝜅)

0 0 sin 𝐵̂(𝜅) cos 𝐵̂(𝜅)
]    (11) 

𝐵̂(𝜅) and 𝑅̂(𝜅) denotes estimated values. And:  

𝜉(𝜅) = [
𝜂(𝜅)

𝛾(𝜅)
]                  (12)

 

The Unscented Transform [2-6] algorithm is presented in 

Table1. 

Table:1 Unscented Transform (UT) equations 
In UKF, the mixing up of the initial states as well as noise variables are delineated as the state random variables. The 
sigma point selection method of UT is implemented to the delineated state random variables to calculate the corre-
sponding matrix of sigma points [7-10].  

Assume 𝑥  as a variable having random characteristics and is propagating through a function 𝑦 = 𝑂(𝑥) that is of 
nonlinear process. Let 𝑥̅  be the mean of 𝑥 and 𝑃𝑥 be its covariance. The values of 𝑦 are computed by contemplating a 
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matrix 𝜒 consisting of sigma vectors 𝜒𝑖 where 𝑖 has a highest value of 2𝐿1 + 1 (here 𝐿1 is the matrix dimension of 𝑥). 
Each 𝜒𝑖 vector is given with consequent weight 𝑊𝑖. The 𝜒  matrix is developed by utilising the subsequent equations: 

𝜒0 = 𝑥̅ 

𝜒𝑖 = 𝑥̅ + (√(𝐿1 + 𝜆) + 𝑃𝑥)
𝑖
𝑖 = 1,2,…… , 𝐿1 

𝜒𝑖 = 𝑥̅ − (√(𝐿1 + 𝜆) + 𝑃𝑥)
𝑖−𝐿1

𝑖 = 𝐿1 + 1,…… ,2𝐿1 

𝑊0
(𝑚)

= 𝜆 (𝐿1 + 𝜆)⁄                         (13) 

𝑊0
(𝑐)

= 𝜆 ⁄ ((𝐿1 + 𝜆) + (1 − 𝜗2 + 𝜉)) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

= 1 (2(𝐿1 + 𝜆))⁄ 𝑖 = 1,2,… ,2𝐿1 

where 𝜆 = 𝜗2(𝐿1 + 𝛼) − 𝐿1 is a scaling factor. 𝜗 is assigned to a minor definite value that defines the distribution of 
sigma points over the mean. 𝛼 is a scaling factor (generally set to zero) and 𝜉 includes prior information of the spread 
of 𝑥 (𝜉 = 2 is best possible for Gaussian process). 

 (√(𝐿1 + 𝜆) + 𝑃𝑥)𝑖
represents the 𝑖𝑡ℎ row of the matrix square root. 𝑊0

(𝑚)
,𝑊0

(𝑐)
, 𝑊(𝑚) and 𝑊(𝑐) represents the weights 

of initialized object state vector, state covariance matrix, state sigma point vector and state sigma point covariance 
matrix respectively. The nonlinear function used for propagating these sigma vectors is represented as  

𝑦𝑖 = 𝑂(𝜒𝑖)𝑖 = 1,2,… . ,2𝐿1                          (14) 

The mean and covariance of weighted posterior sigma points are used to estimate the mean and covariance of 𝑥 [10]. 

 
Implementation of the Process 
Initial of the target state vector, target velocity components are 
computed using first and second measurement sets of range and 
bearing measurements as shown in Table2. 
 
Generation of target motion measurements in simulation 
environment 

A simulator is developed to generate target range and bearing 
measurements. This simulator accepts the inputs given and 
simulates the observer and target positions. It generates range 
and bearing measurements at each second and corrupts with 
white Gaussian noise [8, 9]. 

 
 

Table:2 Unscented Kalman Filter Algorithm 
The UKF implementation steps are as follows: 

(a) Let 𝑛 be the dimension of object state vector. (2𝑛 + 1) state vectors are calculated from the initial points using sigma points: 

𝑋(𝜅) = [

𝑋𝑠(𝜅)

𝑋𝑠(𝜅) + √(𝑛 + 𝜆) + 𝑃(𝜅)

𝑋𝑠(𝜅) − √(𝑛 + 𝜆) + 𝑃(𝜅)

]

𝑇

 (15) 

(b) Based on the process model in (2), transform the sigma points.  

(c) The predicted state estimate at time (𝜅 + 1) with 𝜅  measurements is given as: 

𝑋𝑠(𝜅 + 1) = ∑ 𝑊𝑖
(𝑚)

𝑋𝑠(𝑖, (𝜅 + 1))2𝑛
𝑖=0                        (16) 

(d) The predicted covariance matrix, assuming additive and independent process noise, is taken as:  

𝑃(𝜅 + 1) = ∑ 𝑊𝑖
(𝑐)

[𝑋𝑠(𝑖, (𝜅 + 1)) − 𝑋𝑠(𝜅 + 1)][𝑋𝑠(𝑖, (𝜅 + 1)) − 𝑋𝑠(𝜅 + 1)]
𝑇

+ 𝑄(𝜅)2𝑛
𝑖=0        (17) 

(e) The sigma points are updated using the predicted mean and predicted covariance as follows: 

𝑋(𝜅 + 1) = [

𝑋𝑠(𝜅 + 1)

𝑋𝑠(𝜅 + 1) + √(𝑛 + 𝜆) + 𝑃(𝜅 + 1)

𝑋𝑠(𝜅 + 1) − √(𝑛 + 𝜆) + 𝑃(𝜅 + 1)

]

𝑇

   (18) 

(f) Based on the measurement model given in (16), transform the predicted sigma points.  

(g) The predicted measurement matrix is:  

𝑧̂(𝜅 + 1) = ∑ 𝑊𝑖
(𝑚)

𝑌(𝜅 + 1)2𝑛
𝑖=0  (19)  

where  𝑌(𝜅 + 1) = ℎ(𝑋𝑠(𝜅 + 1))   (20) 

(h) The innovation covariance matrix is calculated as:  

𝑃𝑦𝑦 = ∑ 𝑊𝑖
(𝑐)

[𝑌(𝑖, (𝜅 + 1)) − 𝑧̂(𝜅 + 1)]2𝑛
𝑖=0 [𝑌(𝑖, (𝜅 + 1)) − 𝑧̂(𝜅 + 1)]

𝑇
+ 𝜎𝐵

2(𝜅)  (21) 

(i) The cross-covariance matrix is calculated as: 

𝑃𝑥𝑦 = ∑ 𝑊𝑖
(𝑐)

[𝑋𝑠(𝑖, (𝜅 + 1)) − 𝑋𝑠(𝜅 + 1)]2𝑛
𝑖=0 [𝑋𝑠(𝑖, (𝜅 + 1)) − 𝑋𝑠(𝜅 + 1)]

𝑇
   (22) 

 Kalman gain is calculated as: 

𝐺(𝜅 + 1) = 𝑃𝑥𝑦𝑃𝑦𝑦
−1    (23) 
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(j) The estimated state is calculated as: 

𝑋(𝜅 + 1) = 𝑋(𝜅 + 1) + 𝐺(𝜅 + 1)(𝑧̂(𝜅 + 1) − 𝑧̂(𝜅 + 1))  (24) 

where 𝑧(𝜅 + 1)is measurement vector matrix. 

(k) The inaccuracy in estimated covariance matrix is: 

𝑃(𝜅 + 1) = 𝑃(𝜅 + 1) − 𝐺(𝜅 + 1)𝑃𝑦𝑦𝐺
𝑇(𝜅 + 1)      (25) 

 
Here observer is presumed to be standstill at starting point. The 
movement of the target is uniform in conjunction to speed (𝑣𝑡) 
and course (𝑡𝑐𝑟). Initially the observer and target are assumed 
at be a distance R meters. Line joining observer and target is 

known as line of sight (LOS) and it makes an angle (bearing) 
with respect to North/Y-axis as shown in Fig.1. The 
measurements are made in active mode for every t seconds

. 

Fig. 1 Target and Observer Scenario 
 
 

The target position (𝑥𝑡, 𝑦𝑡) with respect to origin is given by: 

𝑥𝑡 = 𝑅 sin(𝐵)          (26)   

𝑦𝑡 = 𝑅 cos (𝐵)
(27)

 

After t seconds 

𝑑𝑥𝑡 = 𝑣𝑡  sin(𝑡𝑐𝑟)  𝑡   (28) 

𝑑𝑦𝑡 = 𝑣𝑡  cos(𝑡𝑐𝑟)  𝑡  (29) 

Now the new target position after time t is given as: 

𝑥𝑡 = 𝑑𝑥𝑡 + 𝑥𝑡        (30) 

𝑦𝑡 = 𝑑𝑦𝑡 + 𝑦𝑡      (31) 

True bearing and range are calculated as follows 

True bearing = 𝑡𝑎𝑛−1 (𝑥𝑡 − 𝑥0) (𝑦𝑡 − 𝑦0)⁄       (32) 

𝑡𝑟𝑢𝑒 𝑟𝑎𝑛𝑔𝑒 =  √(𝑥𝑡 − 𝑥0)
2 + (𝑦𝑡 − 𝑦0)

2        (33) 

 
 

Input: True target motion 

parameters, Noise in bearing 

and range time 

Estimated 

range, 

bearing, 

course, 

speed with 

time 

Corrupted range and 

bearing 

measurements with 

time 

Simulator UKF 

Performance 

Analysis 

Fig. 2 Building blocks illustration of TMA in simulation 

mode 
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Figure 2 gives the block diagram of process followed for 
obtaining TMA in simulation mode. The corrupted observations 
are used to approximate target motion parameters (TMP) using 
UKF. The estimated TMP [10] are contrasted with that of actual 
values and the performance analysis of the algorithm is carried 
out against a number of scenarios. 
 
IMPLEMENTATION AND OUTCOMES 
It is presumed that research is steered at favourable 
environmental conditions where the measurements are 

available continuously. Simulation is done in a MATLAB 
environment. The scenarios preferred for valuation of algorithm 
are presented in Table III. For instance, scenario1 illustrates a 
target moving at an opening range of 3000m with course and 
speeds of 255o and 10m/s respectively. The opening line of sight 
angle is 45o. The azimuth bearing and range observations are 
distorted with a standard deviation in noise of 0.33o (1σ) and 7m 
(1 σ) respectively. 

 
Table:3 Input Scenarios Chosen for the Algorithm 

Parameters 
Scenarios 

1 2 

Target’s initial range (m) 3000 4000 

Target’s initial bearing (deg) 45 135 

Target’s initial Course (deg) 255 315 

Target’s initial speed (m/s) 10 8.5 

 
The velocity of sound in seawaters is 1500m/s. As the 
maximum range of target is chosen as 3000m, the time taken by 
the transmitted signal to reach the target and return to observer 
is (6000/1500) 4 seconds. Hence measurements are taken at 4 
s interval. In simulation mode, real values are obtainable and 
estimated values are found out and checked for validity of the 
result based on tolerance criteria. The tolerance measure is 
chosen as follows: inaccuracy in range <= 8% of true range, 
inaccuracy in course estimate <= 3o and inaccuracy in speed 
estimate <= 1m/s. 

The estimations and real trajectories of target are shown in 
Fig.3 and Fig.4 for scenarios 1 and 2 respectively. For 

transparency of the concepts, the inaccuracies in speed and 
course estimate for scenario1and 2 shown in Fig.5 (a), 5 (b) and 
6 (a) and 6 (b) respectively. The solution is said to be converged 
once the range, course and speed inaccuracies satisfy the 
tolerance criteria. The solution convergence time for given 
scenarios of Table III are given in Table IV. It is noted that the 
target course and speed estimate for scenario 1 are converged 
at 8th and 25th sample. Hence, for scenario 1, the total result is 
achieved at 25 samples (that is 100s) similarly for scenario 2, 
the approximated solution course and speed have converged at 
10th and 22nd sample respectively. So, the convergence time for 
scenario 2 is obtained at 22nd sample (that is 88 s). 

 
Table:4 Convergence time of solution obtained 

Scenario Course Speed Total solution 

1 8 25 25 

2 10 22 22 

 

 
Fig. 3 Simulated and predicted target paths for scenario 1  

Fig. 4 Simulated and predicted target paths for scenario 2 

 
Fig. 5 (a) Inaccuracy in speed 

 
Fig.5(b).Inaccuracy in course estimate 
Fig.5.Inaccuracies in estimates in scenario 1 
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Fig.6(a).Inaccuracy in speed estimate 

 
Fig.6(b).Inaccuracy in course estimate 
Fig.6.Inaccuracies in estimate  in scenario 2 

 
 
CONCLUSION 
Unscented Kalman filter is employed to approximate target path, 
direction and speed using dunking sonar system. Simulation is 
conducted in Matlab environment and outcomes are shown. 
Based on the results, UKF is recommended to track underwater 
targets using dunking sonar system. 
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