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Abstract: Inactive target tracking using bearings-only 
measurements is a crucial issue of underwater tracking.   
In this paper, bearings-only measurements are used to 
calculate the parameters like range, course and speed 
components of the target in order to analyze the target 
motion. This is called Target Motion Analysis (TMA).  
TMA process is highly non-linear so the traditional, 
optimal linear Kalman filter will not be appropriate to use.  
It is presumed that the target is moving in straight line 
path with constant velocity, so Extended Kalman Filter 
(EKF) is proposed in this paper. The algorithm is 
simulated for several scenarios using MATLAB. Monte-
Carlo runs are performed to evaluate the capability of the 
algorithm.   
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1. Introduction 
 
In underwater applications two dimensional target 
tracking using bearings-only measurement is often carried 
out. Bearing is the angle made by the line of sight from 
the observer to target with respect to some reference axis 
in the clockwise direction. A single observer platform is 
utilized to obtain the bearing measurements. The 
estimates for the target parameters of the target (range, 
course and speed) are acquired from these bearing 
measurements only. The mathematical method for 
obtaining these parameters is given in part A of Section 
II.  
 
The process of analyzing the target motion is non-linear 
due to the non-linear correspondence of bearing 
measurements with the target state vector. Hence the 
Kalman filter which is an optimal linear filter [5] is not 
proposed. The target is presumed to travel with constant 
speed and constant course, so the non-linearity in the 
model is reduced.  The non-linearity in the model is 
linearized by the EKF. Mathematical modeling for the 
filter is given in part B of Section II. 

According to S. C. Nardone and V. J. Aidala one can’t 
estimate the target parameters unless the observer makes 
changes its course or speed which is called maneuvering 
[4, 7]. Course is the angle made by the heading of the 
object with respect to some reference axis in the 
clockwise direction. If the observer makes changes in its 
speed then it radiates more noise and there is a risk of 
being tracked by the target. So the observer approaches 
‘S’ maneuver in course. The target observer scenario is as 
shown in figure 1. The observer is presumed to be initially 
at the origin ‘O’ and the target at position ‘T’. The 
observer follows ‘S’ maneuver for tracking the target. 

 

 
 

Figure. 1. Initial target- observer scenario 

Section III presents the process of simulation and the 
different scenarios on which the simulation is done. The 
results are plotted as graphs and analyzed in the tables. 
Section IV gives the overall summary of the work done in 
this paper. 
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2. Mathematical Modeling 
 

A. Target Motion Analysis 
 
Consider the observer is at position ‘O’ initially and the 
target is moving with constant speed and course. The 
observer state vector at time instant ‘n’ [8] is given as 

 
 
where , , ,  are the velocity and 
range components of the observer in x and y coordinates 
respectively. The change in the observer position is 
obtained from its course and speed as  
 

∗ sin ∗  
∗ cos ∗  

 
where , 		are the change in x-coordinate 
and y-coordinates of observer and  is the observer 
course angle and t is the time period of one second. 
Similarly, target state vector is given as 
 

 
 
where	 , , ,  are the velocity and 
range components of the target in x and y coordinates 
respectively [1]. The change in the target position is 
obtained from its course and speed as  
 

∗ sin ∗  
∗ cos ∗  

 
where , 		are the change in x-coordinate 
and y-coordinates of target and  is the target course 
angle and t is the time period of one second.  The relative 
state vector [1, 3] of the target is given as 
 

		                    (1) 
 
where , , ,  are relative components 
of velocity and range in x and y coordinates respectively. 
The relative state vector for the next time period based on 
the present time state vector is given as 
 

1    (2) 
 
where  is the system dynamics matrix given as 
 

1 0 0 0
0 1 0 0

0 1 0
0 0 1

     (3) 

 
and  is the process noise and ω is given as 

0
0
2⁄ 0

0 2⁄

     (4) 

 

The covariance of the process noise is given as 
 

 

0 2⁄ 0
0 0 2⁄
2⁄ 0 4⁄ 0

0 2⁄ 0 4⁄

  (5) 

 
where  is the variance of the process noise. 
 
The measurement equation for this application has only 
bearing angles and the bearing angle   is given as 
 

tan ⁄     (6) 
 
The bearing measurement is always degraded with noise. 
So, the measured bearing is given as 
 

     (7) 
 
where  is the noise in the measurement. The system 
measurement equation is given as 

    (8) 
where  is the measurement model matrix and  is 
the measurement noise matrix. 
 
B. EKF Algorithm 

 
The EKF linearizes the non-linearities in the state and 
measurement equations and then performs the Kalman 
filtering. Here the non-linearity is considered in the 
measurements obtained. So the measurement model 
matrix is linearized using Taylor series expansion and 
obtained as follows 
 

0 0 cos ⁄ sin ⁄       (9) 
 
where R is the range of the target from observer 
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     (10) 

 
The covariance of the noise in measurement equation is 
given as ∅  which is maximum level of Gaussian noise 
in bearings i.e., 0.330. The state vector time update 
equation is given as  
 

1 ∗ 1    (11) 
 
The estimated state covariance matrix update equation [2] 
is given as 
 

1 ∗ 1 ∗ 1
1       (12) 

 
The Kalman gain [2] for the EKF is given as 

∗ ∅  
(13) 
 
The measurement updates of the estimated state and 
estimated error covariance matrices are given 
respectively as follows 
 

∗     (14) 
 

∗ ∗ ∗ ∗
∗ ∅ ∗     (15) 

 

3. Simulation And Results 

4.  
The observer is maneuvering in its course. So the observer 
initially has a course of 900 for two minutes and then turns 
1800 in order to attain the first leg in maneuvering and has 
a course of 2700.The observer is considered to take four 
minutes for complete maneuver of 1800. The target is 
assumed to be having different initial ranges, speeds and 
courses in different scenarios, which is given in Table 1.  

Table 1: Scenario for EKF algorithm 

Scenarios 
Parameters 

R B TS C OS 
1 3000 0 12 135 8
2 4000 0 10 110 8
3 3500 0 8 110 5

 

where R is the initial range in meters, B is the initial 
bearing in degrees, TS is the speed of the target in m/sec, 

C is the course of the target in degrees and OS is the speed 
of the observer in m/sec. 

The simulation and filtering for 100 Monte-Carlo runs are 
carried out for the above mentioned scenarios using 
MATLAB [6]. The performance is evaluated based on the 
Root-Mean-Squared (RMS) error of the target parameters 
and the solution is obtained based on the criteria of 
acceptance explained as follows. 

The acceptance criterion of the solution for the mentioned 
algorithm for single Monte Carlo run is: 

Range error estimate<=8% of the actual range 
Course error estimate<=3o. 
Speed error estimate<=1m/s. 
 

The convergence times of the solution for the three 
scenarios based on the above mentioned acceptance 
criteria for single run is tabulated in Table II. 

TABLE II : Convergence time in seconds for single run 

Scenario

Convergence times in seconds 

Range Course Speed 
Overall 

convergence 
time 

1 242 252 248 252
2 232 358 163 358
3 232 426 175 426

 

For scenario 1, the estimated range, estimated course and 
estimated speed of the target obtained from simulation for 
single Monte-Carlo run is 242, 252 and 248 seconds 
respectively and the overall convergence time of the 
solution is obtained at 252 seconds. 

 

 

Figure 2 Error in range estimate 

Figures 2 to 4 shows the error in the estimated range, 
course and speed of the target for single Monte-Carlo run. 
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The error in estimated range is reduced after the observer 
changes its path, until then the target path is unobservable 
as shown in the figure 5. 

The acceptance criterion of the solution for 100 Monte-
Carlo runs is assumed as 

Range error estimate<= (8%)/3 of the actual range 
Course error estimate<=1o. 
Speed error estimate<=0.33m/s. 
 
The convergence times of the solution for the three 
scenarios based on the above mentioned acceptance 
criteria is tabulated in Table III. 

 

Figure 3 Error in estimated course 

 

Figure 4 Error in estimated speed  

Table III: Convergence time in seconds for 100 runs 

Scenario 

Convergence times in seconds 

Range Course Speed 
Overall 

convergence 
time 

1 271 316 311 316
2 327 431 326 431
3 377 451 354 451

 

 

Figure.5. Observer and target movements 
For scenario 1, the estimated range, estimated course and 
estimated speed of the target obtained from simulation for 
100 Monte-Carlo runs are 271, 316 and 311 seconds 
respectively and the overall convergence time of the 
solution is obtained at 316 seconds. 

Figure 5 shows the movements of the observer and target. 
The observer follows ‘S’ maneuver whereas the target 
moves in a straight line path. The error in estimated path 
is reduced after the observer changes its path, until then 
the target path is unobservable as shown in the figure 5. 

 

Figure.6 RMS error in range estimate 
 
Figures 6 to 8 depicts the RMS errors in range, course and 
speed of the target for all the three scenarios respectively. 
The simulation is carried out for 100 Monte-Carlo runs 
so that the accuracy in estimation of the target parameters 
is increased.  
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          Figure.7. RMS error in course estimate 

 
            Figure.8. RMS error in speed estimate 
 

5. Conclusion 
 

An attempt is made to present the analysis of EKF for 
bearings-only target tracking. This is a crucial area of 
future research. Numerous scenarios were tested using 
Monte-Carlo simulations. But only few scenarios have 
been presented here which are sufficient to indicate the 
capability of the EKF. The filter works more efficiently 
only when the target becomes observable after the 
manoeuvring of the observer. Woefully, the EKF has no 
incorporated system to guarantee that anticipated 
estimates are used during covariance calculation. 
Regardless of this snag, the analysis demonstrates that 
significant enhancements in filter stability can be 
acknowledged by taking certain primary precautions with 
regard to initialization. 
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