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Abstract In this research work, a target maneuvering in its course is tracked using
Aerial Unmanned Vehicle (AUV) in three-dimensional space making use of bearing
angle, range, and elevation angle measurements. An Extended Kalman filtering algo-
rithm is considered for processing noise altered measurements. An algorithm that
uses chi-square distribution is proposed for the detection of any maneuver in target
parameters. The statistics about the estimated target parameters are provided to arma-
ment administration with the help of acommunication arrangement like a global posi-
tioning system. Details of mathematical modeling for simulating and implementation
of the target and observer paths and outcomes are presented in this work.

Keywords Extended Kalman filter - Estimation - Motion analysis of maneuvering
target - Three-dimensional tracking - Aerial unmanned vehicle

1 Introduction

Aerial unmanned vehicle (AUV) is a harmless inflight warfare vehicle present in
recent times. AUV is an automaton system hovering in the air mostly used for tracking
a target. Parameters that are used to track the target, like bearing, range, and elevation
are detected by sending radio waves. AUV these days are furnished with global
positioning systems so that the armament administration system of AUV keeps track
of it. The armament administration system may be an aircraft in the air or a ship on the
surface. Data observed from AUV is directed to the armament administration system
with the help of a global positioning system so that the armament administration
system will get to know the target’s location and path and to release armament in
that way. The most common Extended Kalman filter (EKF) algorithm is used for
tracking the target. Parameters representing target motion at prolonged ranges are
mostly nonlinear. Consequently, EKF is thought based on balancing and speedily
converging filter difficulties arising in the Kalman filter [1, 2].
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Target tracing is conducted utilizing EKF [3-7]. In this research, the major involve-
ment is tracing a target that is maneuvering in course, as advised in [4, 5]. Observing
the residual plot of the bearing target alone cannot visualize. So, the target maneuver is
detected by the residuals obtained from a random sequence with zero-mean using chi-
square distribution in the gliding window. An innovation that is square and normalized
is utilized to detect if the target is under maneuver or not. For obtaining the finest
result for the period of target maneuver, an ample quantity of plant noise is tallied
to the plant noise covariance matrix. Once the maneuver is concluded, plant noise is
dropped back.

The relation of target state elements is nonlinear to the observations (bearing and
elevation), which makes the process more nonlinear in nature. So, the Kalman filter
that is optimal for the linear process is not applicable for 3-D tracking of the target.
For minimalism of the complexity in method, the target moving with steady speed
and maneuvering only in its course angle is presumed. The system noise measured
1s white Gaussian noise delivered because of ruckus in the target’s velocity.

Section 2 comprises of precise modeling of the filter and process execution. It also
provides the process of detecting the target maneuver execution. Section 3 illustrate
the implementation process and the outcomes attained. This paper is concluded in
Sect. 4.

2 Mathematical Modeling

2.1 System Model
Contemplate the state vector as follows:

Xs(ct) = [#(kt) (k1) 2(ct) Ro(kt) Ry(kt) R.(kt) ] (1)

Here x(kt), y(kt), z(xt). denotes the speed components of target, and
R, (kt), Ry(kt), R, (kt) are its range components in x, y, and z directions corre-
spondingly. The state vector for subsequent time is calculated using the following
equation.

Xkt +1) = BX(kt) + bkt + 1) + Tw(kt). 2)

() is given by
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Here ¢ is the time frame at which observation is acquired. b(kt + 1) is a
deterministic control matrix and is provided by

bkt +1) =

- 4T

0

0

0
—(xo(kt + 1) + xo (k1))
—(o(kt + 1) + yo (k1))
| —(zo(kt + 1) + zo(k1)) |

4)

Here x¢, yo, zo denotes the observer location in x, y, and z directions. To lessen
the mathematical complication, Y-axis is a reference for computing all the bearing
angles and Z-axis for elevation angles. Let w(kt) represent Gaussian process noise.

w(kt) = [wx wy W, ]T

The variance of w(xt) is given by

E[Fkywkt)w" )T (kt)] = 08;;.

where

81‘]' = 0'3) (l = Kt)
= (0 otherwise

ts2 0 0 132 0 0
0 2 0 0 ts3/2 0
0 0 2 0 0 1532

1s3/2 0 0 1s3/4 0 0
0 s2/2 0 0 ts3/4 0

0 0 22 0 0 153/

)

(6)

(7)

(8)
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Z(kt) denotes the matrix of all observations and is represented as:
Z(ct) = [ Ry(kt) Bu(kt) (k1) ] . (10)

Here R, («kt), B,,(kt) and 6,,(xt) are measured range, bearing, and elevation.

Rp(kt) = R(kt) + &Er(x1). (11)

B, (kt) = B(kt) + &p(kt). (12)

Z(kt) = [ Ry (k1) Bu(kt) (k)] - (13)
Here R(kt), B(kt),and 6 (kt) are the simulated values of the range, bearing angle,
and elevation angle.

R(kt) = \/R§(Kt) + R2(c1) + RS (ict). (14)
B(kt) = tan”' (R, (k1)/Ry(k1)).. (15)
O(kt) = tan™' (R, (k1)/ Rz (k1)). (16)

where

Ry =R+ R2. (17)

The measurement vector is given by

Z(kt) = Ht) X, (kt) + & (ict). (18)

0 0 0 sin(B) sin(A) sin(f) cos(B) cos(H)

Hkt)=|000 <8 —R—<B> 0o |. (19)
sin(B) ¢os(0) cos(@) cos(B)  —sin(d)
000 R R R

And
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Eer) =[Ep k&9 ] - (20)

2.2 EKF Algorithm

All EKF implementation is as follows.

1.  The initial state vector’s estimate and its covariance matrix estimate be as of
X (0]0) and P(0|0).
it.  For the subsequent time, the state vector is X (k¢ + 1):

Xs(kt +1) =Bkt + 1xt) X, (kt) + bkt + 1) + w(kt). 21
iii.  The state vector’s covariance matrix for the subsequent time is as follows.
Pkt + 1|kt) = Okt + k) P(k )BT (kt + 1|kt) + Okt +1).  (22)
iv.  The gain of the EKF is as follows:

Gkt 4+ 1) = Pkt + k)@ (kt + 1]x1)
[Hct + )Pkt + 1) H (ct + 1)+ R]™ (23)

v.  The state estimation and its error covariance:

X, Gt +1|(kt + 1) = X, (ct + 1[ct) + G (et + 1)[Z(Kt +1)— 2t + 1)]
(24)

Pkt +1lkt+1)=[1—-Gkt+ 1)H(kt +1)P(xt + 1|kt)] (25)
vi.  For the next iteration

Xs(ktlkt) = X(kt + 1|kt + 1) (26)

P(ktlkt) = P(kt + 1|kt + 1) 27)

2.3 Target Maneuver Detection

At the time of the target’s movement at constant speed and course, the plant noise is
a smaller amount. But, as the target starts its maneuver, the plant noise is gradually
risen [8, 9]. To increase the plant noise the plant covariance matrix is increased by
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multiplying it with a fledge factor of 10 till the target executes maneuvering. When
the target maneuver is complete i.e., it attains the required course, the plant noise
is brought back to its reduced value. The regulated squared innovation, y,(«t), is
calculated as follows.

Volict) = @  (kt)S™ (it + (it + 1) (28)
where ¢(k + 1) is
okt + 1) = Z(kt + 1) — h(xt + 1, X (kt + 1/x1)) (29)
Let S(kt) is
Skt +1)=Hkt+ DPkt+ 1/xt)H (kt + 1) 4+ o (30)
d@)=r's7'y = ¢ 31

where § is diag{S(«¢)} and

Yy =pleR2)...okt ¥ =[p()e?2)...0kN)]" (32)

Here c 1s the threshold with constant value and d is the statistical value of the
chi-square distribution. This gliding window of size five samples is chosen for this
application.

3 Simulation and Results

Assuming that research is steered at satisfactory ecological circumstances, simulation
is conducted on a workstation using Matlab. The trajectories that are followed by
target and observer are chosen in Table 1, for performance validation of the process.
For instance, scenario 1 defines a target at an opening distance of 2 km away from
the spectator, moving with an initial course angle and speed of 170° and 300 m/s
correspondingly. The preliminary bearing observed is 0°. The observations, bearing
angle, and distance are assumed to be tarnished having a standard deviation in the
error of 0.33° (1o) and 0.01 km (lo) correspondingly. From 300 s onwards, the
target starts its maneuver in course to 295° with a rotating frequency of 3° for every
second. The target’s initial elevation angle is 0° for ease. The observer is presumed
to move with a continual pace of 25 m/s and with 90° course.

The endless accessibility of observations for every time sample is presumed. The
actual values of the target position and observer position are generated using Matlab
software. Hence, the estimated parameters are authenticated based on the actual
modeled parameter values built on specific acceptable standards. The acceptance
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Table 1 Scenarif).s of target Parameters Scenarios
and observer positions
1 2

Opening range of target (m) 2000 3000
The opening bearing of a target (°) 0 0
The opening course of the target (°) 135 170
The course of the target after 300 s (°) | 235 295
Speed of target (m/s) 300 400
Elevation of the target (°) 0 0
Speed of observer (m/s) 25 20
The course of the observer (°) 90 90
Bearing angle noise (10) (°) 0.33 0.33
Range noise (1o) (m) 10 10
Elevation angle noise (10) (°) 0.33 0.33

measure is preferred based on armament control necessity. The solution is acknowl-
edged or believed to be obtained if inaccuracy in the estimated course is less than 3°
and inaccuracy in the estimated speed of the target is less than or equal to 1 m/s.
For scenario 2, the approximations and factual tracks of the target along with that
of observer trajectory are shown in Fig. 1. For precision of the notions, Figs. 2 and
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Fig. 1 Simulated and true trajectories of target and observer of scenario 2
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Fig. 2 Factual velocity versus projected velocity of a target for scenario 2
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Simulated and estimated target course components
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Fig. 3 Factual course versus projected course of a target for scenario 2
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Fig. 4 Factual elevation versus projected elevation of a target for scenario 2

3 shows the actual and estimated course angle and speed of the target for scenario 2
correspondingly. Likewise, the target’s actual and estimated elevation angle for the
same scenario is depicted in Fig. 4. The result is acknowledged or encountered if
the inaccuracies in the estimated course and estimated speed of the target are in the
interior of the receiving conditions. Table 2 provides the solution convergence time
samples in seconds for the situations provided as in Table 1.

Let us consider scenario 2 to evaluate the algorithm, where the target is maneu-
vering in its course. The convergence time of outcomes within acceptance criteria

Table 2 Convergence time .
T Parameter converged Scenarios
sample of the solution in
seconds 1 2
Earlier to target | Course 54 67
fhaneuver Speed 84 43
Elevation 8 2
Solution convergence 84 67
Post target Course 385 460
maneuver Speed 84 43
Elevation 8 2
Solution convergence | 385 460
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for the estimated course once the target completes the maneuver, is at the 460th-time
sample and at the 67th time sample before target maneuvers. As the speed of the
target is unchanged, there is only one convergence time, i.e., 43 s, before and after
the target maneuver.

4 Conclusion

In this research, an attempt is made to develop an algorithm to track a maneuvering
target in a three-dimensional plane. Grounded on the outcomes attained in simulation,
EKF is suggested to approximate target parameters in a dynamic model of tracking
using AUV systems.
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