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Abstract 
Inactive object tracking using bearings-only measurements is a crucial 

issue of underwater tracking.   In this paper, bearings-only measurements 

are used to determine the parameters like range, course and speed 

components of the object in order to analyze the object motion. This is 

called Object Motion Analysis (OMA) and this process is highly non-linear 

so the Kalman filter which is a traditional, optimal linear filter will not be 

appropriate to relay on.  It is presumed that the object is moving in an 

undeviating path with constant velocity. So, Unscented Kalman Filter 

(UKF) and Modified Gain Bearings-only Extended Kalman Filter 

(MGBEKF) algorithms are implemented and their performance is assessed 

based on their solution convergence time. The algorithms are simulated for 

several scenarios which are close to reality using MATLAB. Monte-Carlo 

runs are conducted to evaluate the capability of the algorithms. 

Key Words:Stochastic signal processing, modified gain extended Kalman 

filter, Unscented Kalman filter, Monte-Carlo simulation. 
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1. Introduction 

Two dimensional tracking of objects with bearings-only measurements is often 

carried out in underwater applications [1]. Bearing is the angle made by the line 

of sight from the observer to object with respect to some reference axis in the 

clockwise direction. A single observer platform is utilized to obtain the bearing 

measurements. The estimates for the object parameters (range, course and 

speed) are acquired from these bearing measurements only. The mathematical 

method for obtaining these parameters is provided in Section 2.1. 

Analyzing the object’s motion is a non-linear process as the correspondence of 

bearing measurements with the object state vector is nonlinear. Hence the 

Kalman filter which is an optimal linear filter [1-8] is not proposed. The object 

is presumed to travel with a constant course and speed, so the non-linearity of 

the model will be reduced. The plant noise considered is white Gaussian noise 

generated due to disturbance in the velocity of object. 

The non-linearity in the model is linearized by the EKF. The practicality of 

Speyer’s modified gain extended Kalman filter (MGEKF) [3] along with the 

simpler version of algorithm introduced by Galkowski [4] are considered and 

the algorithm Modified Gain Bearings-only EKF (MGBEKF) is proposed in 

this paper. The algorithm for MGBEKF is given in section 2.2. 

Another algorithm that is employed for comparison is Unscented Kalman Filter 

(UKF). Unscented Transformation (UT) is the basis for UFK algorithm [5-7]. In 

UT, a fixed number of sigma points are chosen deterministically with some 

mean and covariance. From each sigma point the moments of the transformed 

variable are estimated by propagation of the sigma points through a nonlinear 

function. The efficiency to capture the higher order moments obtained during 

the nonlinear transform keeps UT ahead of Taylor series based approximation. 

The mathematical modeling for UKF is explained in section 2.3. 

 

Figure 1: Initial Object- Observer Scenario 
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According to S. C. Nardone and V. J. Aidala one can’t estimate the object 

parameters unless the observer makes changes its course or speed which is 

called maneuvering [10]. Course is the angle made by the heading of the object 

with respect to some reference axis in the clockwise direction. If the observer 

makes changes in its speed then it radiates more noise and there is a risk of 

being tracked by the object. So the observer approaches ‘S’ maneuver in course. 

The object observer scenario is as shown in figure 1. The observer is presumed 

to be initially at position ‘O’ and the object at position ‘T’. The observer 

follows ‘S’ maneuver for tracking the object. 

Performance of the two algorithms is assessed based on the best convergence 

time of the solution for the three scenarios given in Table 1. Section 3 presents 

the process of simulation and the different scenarios on which the simulation is 

done. The results are plotted as graphs and analyzed in the tables. Section 4 

gives the overall summary of the work done in this paper. 

2. Mathematical Modelling 
  Object Motion Analysis 

Consider the observer is at position ‘O’ initially and the object is moving with 

constant speed and course.  The state vector at time instant ‘n’ of the observer 

[8] is represented as  

𝑆𝑜 𝑛 =  𝑣𝑥𝑜  𝑛 𝑣𝑦𝑜  𝑛 𝑟𝑥𝑜  𝑛 𝑟𝑦𝑜  𝑛  𝑇 

where 𝑣𝑥𝑜  𝑛 , 𝑣𝑦𝑜  𝑛 , 𝑟𝑥𝑜  𝑛 , 𝑟𝑦𝑜  𝑛  are the velocity and range components of 

the observer in x and y coordinates respectively. The change in the observer 

position is obtained from its course and speed as  

𝑑𝑟𝑥𝑜  𝑛 = 𝑣𝑥𝑜  𝑛 ∗ sin 𝑜𝑐𝑟 ∗ 𝑡 
𝑑𝑟𝑦𝑜  𝑛 = 𝑣𝑦𝑜  𝑛 ∗ cos 𝑜𝑐𝑟 ∗ 𝑡 

where 𝑑𝑟𝑥𝑜  𝑛 , 𝑑𝑟𝑦𝑜  𝑛   are the change in x-coordinate and y-coordinates of 

observer and 𝑜𝑐𝑟 is the observer course angle and t is the time period of one 

second. Similarly, object state vector is represented as 

𝑆𝑡 𝑛 =  𝑣𝑥𝑡 𝑛 𝑣𝑦𝑡  𝑛 𝑟𝑥𝑡 𝑛 𝑟𝑦𝑡 𝑛  𝑇 

where 𝑣𝑥𝑡 𝑛 , 𝑣𝑦𝑡  𝑛 , 𝑟𝑥𝑡 𝑛 , 𝑟𝑦𝑡 𝑛  are the velocity and range components of 

the object in x and y coordinates respectively [1]. The change in the object 

position is obtained from its course and speed as  

𝑑𝑟𝑥𝑡 𝑛 = 𝑣𝑥𝑡  𝑛 ∗ sin 𝑡𝑐𝑟 ∗ 𝑡 
𝑑𝑟𝑦𝑡 𝑛 = 𝑣𝑦𝑡  𝑛 ∗ cos 𝑡𝑐𝑟 ∗ 𝑡 

where 𝑑𝑟𝑥𝑡 𝑛 , 𝑑𝑟𝑦𝑡  𝑛   are the change in x-coordinate and y-coordinates of 

object and 𝑡𝑐𝑟 is the object course angle and t is the time period of one 

second.The relative state vector [1, 3] of the object is represented as 

𝑆𝑠 𝑛 =  𝑣𝑥 𝑛 𝑣𝑦  𝑛 𝑟𝑥 𝑛 𝑟𝑦 𝑛  𝑇                          (1)       
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where  𝑣𝑥 𝑛 , 𝑣𝑦  𝑛 , 𝑟𝑥 𝑛 , 𝑟𝑦 𝑛  are relative components of velocity and range 

in x and y coordinates respectively. The relative state vector for the next time 

period based on the present time state vector is calculated as 

𝑆𝑠 𝑛 + 1 = 𝐴 𝑛 𝑆𝑠 𝑛 + 𝑏(𝑛 + 1) + 𝜔𝐶(𝑛)              (2) 

where 𝐴 𝑛  is the system dynamics matrix calculated as 

𝐴 𝑛 =  

1 0 0 0
0 1 0 0
𝑡 0 1 0
0 𝑡 0 1

                                                     (3) 

𝐶(𝑛) is the process noise and ω is calculated as 

𝜔 =  

𝑡 0
0 𝑡

𝑡2 2 0

0 𝑡2 2 

                                                           (4) 

𝑏 𝑛   is a deterministic matrix and is calculated as 

𝑏 𝑛 + 1 =

 
 
 
 
 

0
0

− 𝑟𝑥𝑜  𝑛 + 1 − 𝑟𝑥𝑜  𝑛  

−  𝑟𝑦𝑜  𝑛 + 1 − 𝑟𝑦𝑜  𝑛   
 
 
 
 
𝑇

 

The covariance of the process noise is calculated as 

𝑄 𝑛 = 𝐸  𝜔𝐶(𝑛)  𝜔𝐶(𝑛) 𝑇   

𝑄 𝑛 = 𝜎2

 
 
 
 
𝑡2 0 𝑡3 2 0

0 𝑡2 0 𝑡3 2 

𝑡3 2 0 𝑡4 4 0

0 𝑡3 2 0 𝑡4 4  
 
 
 

                           (5) 

where 𝜎2 represents variance in the process noise. 

The measurement equation for this application has only bearing angles and the 

bearing angle 𝛽 𝑛   is represented as 

𝛽𝑚  𝑛 = tan−1 𝑟𝑥 𝑛 𝑟𝑦 𝑛   + Υ𝑏                                   (6) 

where Υ𝑏   is the noise in measurement which is assumed to be following 

Gaussian distribution with variance 𝜎𝐵
2.  

  MGBEKF Algorithm 

The plant noise and measurement noise are presumed to be independent to each 

other. The nonlinear equation (6) is linearized by using the Taylor series 

expansion. The measurement model matrix is calculated as 
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𝐻 𝑛 + 1 =

 
 
 
 

0
0

𝑟𝑦(𝑛 + 1) 𝑅2(𝑛 + 1) 

𝑟𝑥(𝑛 + 1) 𝑅2(𝑛 + 1)  
 
 
 
𝑇

                               (7) 

Since the actual values of range will not be known, the estimated range values 

will be used in the above equation. The predicted covariance matrix is 

calculated as 

𝑃 𝑛 + 1 =  𝐴 𝑛 + 1 𝑃 𝑛 𝐴𝑇(𝑛 + 1) + 𝜔𝐶(n + 1)ωT     (8)   

The Kalman gain is 

𝐺 𝑛 + 1 = 𝑃 𝑛 + 1 𝐻𝑇(𝑛 + 1) 𝜎𝐵
2 + 𝐻 𝑛 + 1 𝑃 𝑛 + 1 𝐻𝑇(𝑛 + 1) −1  (9)  

The updated state matrix is calculated as 

𝑆𝑠 𝑛 + 1 = 𝑆𝑠 𝑛 + 1 + 𝐺 𝑛 + 1  𝛽𝑚  𝑛 + 1 − 𝑀 𝑛 + 1, 𝑆𝑠 𝑛 + 1       (10) 

where 𝑀 𝑛 + 1, 𝑆𝑠 𝑛 + 1   is the bearing measurement obtained from 

predicted estimate at time index  𝑛 + 1 . The updated covariance matrix is 

given in equation (11)  

𝑃 𝑛 + 1 =  𝐼 − 𝐺 𝑛 + 1 𝑔 𝛽𝑚  𝑛 + 1 , 𝑆𝑠 𝑛 + 1   ∗ 𝑃 𝑛 + 1 ∗

 𝐼 − 𝐺 𝑛 + 1 𝑔 𝛽𝑚  𝑛 + 1 , 𝑆𝑠 𝑛 + 1   
𝑇

+ 𝜎𝐵
2𝐺 𝑛 + 1 𝐺𝑇 𝑛 + 1   (11) 

where  𝑔  represents the modified gain function and is calculated as follows [12] 

𝑔 =  0 0  
cos 𝛽𝑚

𝑟𝑥 sin 𝛽𝑚 +𝑟𝑦 cos 𝛽𝑚
  

−sin 𝛽𝑚

𝑟𝑥 sin 𝛽𝑚 +𝑟𝑦 cos 𝛽𝑚
     (12) 

 

 UKF Algorithm 

UKF is a straight forward add-on of the UT to the recursive estimation. In UKF, 

the concatenation of the original states and noise variables are delineated as the 

state random variables. The sigma point selection method of UT is implemented 

to the delineated state random variables to calculate the corresponding matrix of 

sigma points.  

A random variable 𝑥 is considered to be propagating through a nonlinear 

function  𝑦 = 𝑈 𝑥 . Consider 𝑥   as the mean of 𝑥 and   𝑃𝑥  as the covariance 

of  𝑥. The statistics of  𝑦 are calculated by considering a matrix 𝜒 of sigma 

vectors 𝜒𝑖  with 𝑖 having a maximum value of 2𝐿1 + 1(where 𝐿1  is the 

dimension of 𝑥). The sigma vectors 𝜒𝑖   are assigned with corresponding 

weights  𝑊𝑖 . The matrix 𝜒  is formed by using the following equations [13]: 

𝜒0 = 𝑥  

𝜒𝑖 = 𝑥 +    𝐿1 + 𝜆 + 𝑃𝑥 
𝑖 

                     𝑖 = 1,2,…… , 𝐿1 

𝜒𝑖 = 𝑥 −    𝐿1 + 𝜆 + 𝑃𝑥 
𝑖−𝐿1  

         𝑖 = 𝐿1 + 1,…… ,2𝐿1 

𝑊0
(𝑚)

= 𝜆  𝐿1 + 𝜆                                                         (13) 
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𝑊0
(𝑐)

= 𝜆  ( 𝐿1 + 𝜆 +  1 − 𝜗2 + 𝜉 ) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

= 1  2 𝐿1 + 𝜆         𝑖 = 1,2,… ,2𝐿1 

where 𝜆 = 𝜗2 𝐿1 + 𝛼 − 𝐿1 is a scaling parameter. 𝜗 is set to a small positive 

value (e.g., 1e-3) that determines how the sigma points are spread around the 

mean. 𝛼, which is set to zero, is a secondary scaling parameter and 𝜉  

incorporates prior knowledge of the distribution of 𝑥 (for Gaussian distribution, 

𝜉 = 2 is optimal).    𝐿1 + 𝜆 + 𝑃𝑥 𝑖  
 represents the 𝑖𝑡ℎ  row of the matrix 

square root. 𝑊0
(𝑚)

, 𝑊0
(𝑐)

, 𝑊(𝑚) and 𝑊(𝑐) represents the weights of initialized 

object state vector, state covariance matrix, state sigma point vector and state 

sigma point covariance matrix respectively. The nonlinear function used for 

propagating these sigma vectors is represented as  

𝑦𝑖 = 𝑈 𝜒𝑖        𝑖 = 1,2, … . ,2𝐿1                                       (14) 

The weighted mean and covariance of posterior sigma points are utilized to 

estimate the mean and covariance of  𝑥 [13]. 

The UKF implementation steps are as follows: 

(a) Let 𝐿1 be the dimension of object state vector.  2𝐿1 + 1  state 

vectors are calculated from the initial points using sigma points  

 𝑆 𝑛 =  

𝑆𝑠(𝑛)

𝑆𝑠 𝑛 +   𝐿1 + 𝜆 + 𝑃(𝑛)

𝑆𝑠 𝑛 −   𝐿1 + 𝜆 + 𝑃(𝑛)

 

𝑇

                                     (15) 

(b) Based on the process model equation (2), transform the sigma 

points.  

(c) The predicted state estimate at time (𝑛 + 1) with 𝑛  measurements 

is calculated as 

𝑆𝑠 𝑛 + 1 =  𝑊𝑖
(𝑚)

𝑆𝑠 𝑖,  𝑛 + 1  
2𝐿1
𝑖=0                                  (16) 

(d) The predicted covariance matrix, assuming additive and independent 

process noise,  is calculated as  

𝑃 𝑛 + 1 =  𝑊𝑖
(𝑐)

 𝑆𝑠 𝑖,  𝑛 + 1  − 𝑆𝑠 𝑛 + 1  ×  𝑆𝑠 𝑖,  𝑛 +
2𝐿1
𝑖=0

1  − 𝑆𝑠 𝑛 + 1  
𝑇

+ 𝑄 𝑛                                       (17) 

(e) The sigma points are updated using the predicted mean and 

predicted covariance as follows 

𝑆 𝑛 + 1 =  

𝑆𝑠(𝑛 + 1)

𝑆𝑠 𝑛 + 1 +   𝐿1 + 𝜆 + 𝑃(𝑛 + 1)

𝑆𝑠 𝑛 + 1 −   𝐿1 + 𝜆 + 𝑃(𝑛 + 1)

 

𝑇

           (18) 

(f) Based on the measurement model given in equation (16), transform 

the predicted sigma points.  

(g) Predicted measurement matrix is calculated as 

𝑀  𝑛 + 1 =  𝑊𝑖
(𝑚)

𝑌 𝑛 + 1 
2𝐿1
𝑖=0                            (19)  

where   𝑌 𝑛 + 1 = ℎ 𝑆𝑠(𝑛 + 1)                                       (20) 
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(h) The innovation covariance matrix is calculated as  

𝑃𝑦𝑦 =  𝑊𝑖
 𝑐  𝑌 𝑖,  𝑛 + 1  − 𝑀  𝑛 + 1  

2𝐿1
𝑖=0  𝑌 𝑖,  𝑛 + 1  −

𝑀  𝑛 + 1  
𝑇

+ 𝜎𝐵
2(𝑛)                                                         (21) 

(i) The cross covariance matrix is calculated as 

𝑃𝑥𝑦 =  𝑊𝑖
 𝑐  𝑆𝑠 𝑖,  𝑛 + 1  − 𝑆𝑠 𝑛 + 1  

2𝐿1
𝑖=0  𝑆𝑠 𝑖,  𝑛 + 1  −

𝑆𝑠 𝑛 + 1  
𝑇
                                                            (22)  

Kalman gain is calculated as 

𝐺 𝑛 + 1 = 𝑃𝑥𝑦𝑃𝑦𝑦
−1                                                           (23) 

(j) The estimated state is calculated as 

𝑆 𝑛 + 1 = 𝑆 𝑛 + 1 + 𝐺(𝑛 + 1) 𝑀  𝑛 + 1 − 𝑀  𝑛 + 1   (24) 

 where 𝑀(𝑛 + 1) is  measurement vector matrix. 

(k) Error covariance matrix estimation is calculated as 

𝑃 𝑛 + 1 = 𝑃 𝑛 + 1 − 𝐺 𝑛 + 1 𝑃𝑦𝑦𝐺
𝑇(𝑛 + 1)                 (25) 

3. Simulation and Results 

This research paper assesses the performance of both algorithms by 

implementing in MATLAB PC environment. The measurements are assumed to 

be available continuously for every second. The observer is maneuvering in its 

course. So the observer initially has a course of 90
0 

for two minutes and then 

turns 180
0 

in order to attain the first leg in maneuvering and has a course of 

270
0
.The observer is considered to take four minutes for complete maneuver of 

180
0
. The object is assumed to be having different initial ranges, speeds and 

courses in different scenarios, which is given in Table 1.  

The object state vector’s initial estimate for implementation of both algorithms 

is taken as  

𝑆𝑠 0,0 =  5 5 5000 sin 𝛽𝑚 5000 cos𝛽𝑚    

The prediction of velocity components of the object is difficult as only angle 

measurements are available. So they are each assumed as 5m/s. The object’s 

initial position is calculated based on the Sonar Range of the Day (SRD), which 

is assumed to be 5000m. The initial state covariance matrix can be taken as a 

diagonal matrix if the uniform distribution of initial state estimate is considered 

and is given as  

𝑃 0,0 = 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙

 
 
 
 
 
4𝑣𝑥

2 0,0 12 

4𝑣𝑦
2 0,0 12 

4𝑟𝑥
2 0,0 12 

4𝑟𝑦
2 0,0 12  

 
 
 
 

  

The simulation and filtering for 100 Monte-Carlo runs are performed for the 

above mentioned scenarios using MATLAB [6] for both MGBEKF and UKF 

algorithms. The performance is assessed based on the Root-Mean-Squared 

(RMS) error of the object parameters and the solution is obtained based on the 
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criteria of acceptance explained as follows. 

Range error estimate<=2.66% of the actual range 

Course error estimate<=1
o
. 

Speed error estimate<=0.33m/s. 

The convergence time of the solutions for the three scenarios based on the 

above mentioned acceptance criteria for 100 runs are tabulated in Table 2 for 

UKF algorithm and Table 3 for MGBEKF algorithm. 

For scenario 1, the estimated range, estimated course and estimated speed of the 

object within the acceptance criteria are obtained from simulation at 376, 367 

and 400 seconds respectively using UKF algorithm and the overall convergence 

time of the solution is obtained at 400 seconds. For the same scenario, the 

parameters of the object within the acceptance criteria are obtained from 

simulation at 256, 280 and 262 seconds respectively using MGBEKF algorithm 

and the overall convergence time of the solution is obtained at 280 seconds. 

It can be observed from the tables 2 and 3 that the solution convergence of 

MGBEKF algorithm is faster when compared to that of UKF algorithm for all 

the scenarios. Though the computational complexity of MGBEKF is a little 

higher than that of UKF, the convergence of the solution plays a key role in 

realistic scenarios. 

Figures 3-5 shows the comparison of RMS errors in estimates of range, 

estimates of course and estimates of speed of the object for both MGBEKF and 

UKF algorithms. It can be observed from the figures that MGBEKF algorithm 

attain low RMS error values faster than the UKF algorithm which leads to faster 

convergence of the solution. 

Table 1: Scenarios for the Given Algorithms 

Scenarios Initial Range 

(m) 

Initial Bearing 

(deg) 

Object Speed 

(m/s) 

Observer speed 

(m/s) 

Object course 

(deg) 

1 3000 0 12 8 135 

2 3500 0 12 10 110 

3 4500 0 8 5 135 

Table 2: Convergence Time in Seconds for 100 Runs 

Scenario UKF 

Range Course Speed Total scenario 

1 376 367 400 400 

2 412 448 438 448 

3 421 455 463 455 

Table 3: Convergence Time in Seconds for 100 Runs 

Scenario 
MGBEKF 

Range Course Speed Total scenario 

1 256 280 262 280 

2 297 355 302 355 

3 341 419 373 419 
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Figure 2: Observer and Object 

Movement 

 

Figure 3: RMS Errors in 

Estimates of Range 

 

Figure 4: RMS Errors in  Estimates 

of Course 

 

Figure 5: RMS Error in Estimates 

of Speed 

4. Conclusion 

An attempt is made to present the analysis of MGBEKF and UKF algorithms 

for bearings-only object tracking. This is a crucial area of future research. 

Numerous scenarios were tested using Monte-Carlo simulations. But only few 

scenarios have been presented here which are sufficient to indicate the 

capability of MGBEKF over UKF. 
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