
DOI: 10.4018/IJeC.2021070103

International Journal of e-Collaboration
Volume 17 • Issue 3 • July-September 2021

﻿
Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

46

Measure of Nonlinearity With Application 
to Bearings-Only Target Tracking
Kausar Jahan, Koneru Lakshmaiah Education Foundation (Deemed), India

 https://orcid.org/0000-0003-2162-8676

Sanagapallea Koteswara Rao, Koneru Lakshmaiah Education Foundation (Deemed), India

ABSTRACT

Using the recently proposed measure of nonlinearity (MoN), the authors try to find the magnitude of 
nonlinearity for passive target tracking with bearings-only measurements in underwater environment. 
The method derived to measure the nonlinearity is completely based on the state covariance matrices 
of the filters. It is tried to find the allowable magnitude of nonlinearity in terms of MoN with which 
a filter can perform to estimate the target motion parameters with required accuracy. In this paper, 
MoN values for different filters are computed for different scenarios. Results obtained in the Monte 
Carlo simulation are presented.
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1. INTRODUCTION

A nonlinear problem in any area is generally difficult to address than a linear problem, and the 
complication increases with an increase in system nonlinearity. Although it is usually not difficult 
to ascertain if a system is linear or nonlinear, simply knowing that the system is nonlinear is not 
enough. It is prudent to know how much nonlinear the system is, i.e., to measure the nonlinearity of 
a problem. Such quantitative information about the problem reveals the root of the difficulty inherent 
in dealing with the problem, especially when comparing different processes.

The calculation of the nonlinearity of the system is as follows. For simplicity, a nonlinear function 
is approximated based on an equivalent linear function, as shown in Figure 1. Let g x( )  be a nonlinear 
function bounded in a domain with limits x y

l l
,( )  and x y

u u
,( ) , and a linear function f x( ) . The 

nonlinearity in the function corresponding to the straight line is calculated as the difference of g x( )  
from f x( )  and is g x f x( )− ( ) . Simply calculating the difference may make a zero-average of the 
difference between them (Emancipator & Kroll, 1993). So, the difference is squared, averaged, square 
rooted (Root Mean Squared), and then minimal values of the difference are calculated. But this 
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technique fails if the nonlinearity in the system is high enough. Hence an appropriate measure is 
needed to define nonlinearity levels in a system.

Considering the above-said method as a basis, for an overall system, the researchers developed 
various methods to measure nonlinearity. Nonlinear functions are generally linearised using Taylor 
series expansion. Beale’s pioneering work (Beale, 1960) was the measurement of nonlinearity in 
terms of the deviation of nonlinear function from the linear function developed using Taylor series 
expansion. D. M. Bates et al. introduced a method to measure nonlinearity using relative curvatures 
(Bates & Watts, 1980), and J. Dunik et al. (2016) carried out a detailed survey on nonlinearity using D. 
M. Bates method. Li et al. (2019) constructed a combined nonlinear function using the time evolution 
and measurement functions in a filtering problem. M. Mallick et al., (2019) and X. R. Li et al., (2011) 
further continued the research on MoN. Their work represents a measure of the mean square distance 
between the given nonlinear system and a subset of all linear systems in a functional space.

Similar methods for measurement of nonlinearity are proposed in (Bucci et al., 2001; Li, 2012) 
for different applications. Usual methods for measuring nonlinearity can be broadly classified as 
follows. 1. A general measurement of nonlinearity function by its divergence from the linear function. 
2. A specific measure of nonlinearity by using the bend in the nonlinear function at some reference 
point (Liu & Li, 2015).

The methods used to measure the nonlinearity are commonly known as Measure of Nonlinearity 
(MoN). Sultana et al. (2019) and X. R. Li et al. (2011) introduced an MoN calculation based on the 
state covariance matrix generated in the filtering algorithm. Work on these concepts continued and 
extended to bearings-only tracking (BOT) and ground moving targets using UKF and PF in (Sultana 
et al., 2019). The authors are motivated by the work presented in (Bates & Watts, 1980; Dunik et al., 
2016; Li, 2012; Sultana et al., 2019) to apply MoN for BOT in passive mode for underwater target 
tracking using measurements from two different sensor arrays.

MoN of the system helps in determining the performance of the estimator, i.e., the extent of 
nonlinearity for which a filter can perform with acceptable error in estimated target parameters. In 
BOT, the nonlinearity of the process may change with change in the observer or target course or 
speed. This research calculates the nonlinearity in BOT with different target courses for different 
filtering algorithms. For the same scenario, MoN may differ with different filtering algorithms as 
MoN calculation is completely based on the state covariance matrices generated by the respective 
algorithms. Filter with a transformed or linearized measurement model may have lower MoN than a 
filter using the measurement model without any modification.

Figure 1. Sample of quantitative measure of nonlinearity
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In an underwater scenario, BOT in passive mode is widely used. The signals radiated from the 
target are converted into bearing measurements to find the target path. These signals can be machinery 
noise from a target and are detected by an increase in energy above ambient at a certain bearing. 
Tracking a target using only bearing measurements is called BOT, and literature of BOT is available 
since 1979 (Aidala, 1979). In general, the 2D Cartesian state vector is used in finding the position 
and velocity of a target. Measurements are presumed to be available continuously for every second. 
Underwater observer contains, in general, single sonar, and hence observer carries out ‘S’ maneuver 
to make the process observable (Zhang et al., 2017; Zhu et al., 2012). The bearing measurements 
are nonlinearly related to the target state vector (Simon, 2006), and the ‘S’ maneuver is always not 
suitable. Proper change in bearing rate is enough for the process to be observable. So,the observer is 
recommended to follow certain maneuvers to achieve the bearing rate making the process observable 
(Koteswara Rao, 2005; Koteswara Rao, 2018).

To eliminate the divergence in solution and to improve the state estimation accuracy, several 
filtering algorithms are in use (Karthikeyan et al., 2019; Paul & Raja, 2017; Praveen Sundar et al., 
2020; Umamaheswaran et al., 2019; Velliangiri et al., 2020; Vinoth Kumar et al., 2019; Vinoth 
Kumar et al., 2020). researchers developed several techniques with a difference in applicability and 
computational complexity (e.g., Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), 
and Particle Filter (PF) were developed. For example, in EKF, the nonlinearity in process is reduced 
by linearizing the system nonlinearities by using Taylor series expansions. It is a sub-optimal filter 
for the systems with low levels of nonlinearity. Other filters like UKF and PF use the deterministic 
resampling method for target state estimation. Hence, the MoN calculated differs for the same scenario 
with different filtering algorithms.

In this research paper, the authors would like to extend the MoN analysis for BOT with bearings-
only measurements for various scenarios, using three different filterings (Koteswara Rao, 2005; Simon, 
2006) algorithms, EKF, modified gain bearings-only extended Kalman filter (MGBEKF) and UKF. 
The maximum/minimum nonlinearity with which a filter can perform well and provide consistent 
results is analyzed for the BOT application. The MoN values at the samples where the solution is 
obtained are analyzed for several scenarios, and the same is explained in detail in Section 3 of the 
paper. The complexity in the computation of PF is higher than other filters, so it is not considered 
in this paper.The convergence analysis of the estimated motion parameters of the target is presented 
using root mean squared errors.

Mathematical modeling of state and measurement models for BOT and MoN are represented 
in Section 2. Section 3 is about the scenarios, acceptance criteria of the solution, simulation, 
and results obtained. Analyzation of MoN concerning different filtering (Koteswara Rao, 2005; 
Panigrahi & Bhuyan, 2017; Simon, 2006) algorithms for the BOT filtering process is also presented. 
Discussions on the results obtained and the inferences made from results are given in section 3. The 
paper is concluded in section 4. The sponsored project under which the research is being carried is 
acknowledged in section 5.

2. STATE AND MEASUREMENT MODELS

2.1. Bearings-Only Tracking
Consider the observer is at origin initially, and the target follows persistence speed and course. Target 
and observer movements are shown in Figure 2.

The observer state vector at time instant ‘τ ’ (Aidala, 1979; Zhang et al., 2017) is given as:

S v v r r
o xo yo xo yo

T

τ τ τ τ τ( ) = ( ) ( ) ( ) ( )



 	 (1)
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Here v
xo
τ( ) , v

yo
τ( ) , r

xo
τ( ) , r

yo
τ( )  are the speeds and ranges of the observer in x  and y  

coordinates respectively. The change in the observer position is obtained from its course and 
speed as:

dr v ocr t
xo xo
τ τ( ) = ( ) ( )sin 	 (2)

dr v ocr t
yo yo
τ τ( ) = ( ) ( )cos 	 (3)

Here dr dr
xo yo
τ τ( ) ( ),  are the change in x  and y  coordinates of observer and ocr  is the observer 

course and t is one second.
Similarly, the target state vector is given as:

S v v r r
t xt yt xt yt

T

τ τ τ τ τ( ) = ( ) ( ) ( ) ( )



 	 (4)

Here v
xt
τ( ) , vyt τ( ) , rxt τ( ) , ryt τ( )  represent target’s speed and range values in x  and y  

coordinates respectively. Change in target position is obtained from its course and speed as:

dr v tcr t
xt xt
τ τ( ) = ( ) ( )sin 	 (5)

dr v tcr t
yt yt
τ τ( ) = ( ) ( )cos 	 (6)

Here dr dr
xt yt
τ τ( ) ( ),  are the change in x  and y  coordinates of the target, and tcr  is the course 

of the target, and t is the time of one second. The target’s relative state vector (Jones et al., 2011; 
Simon, 2006; Zhu et al., 2012) is as follows:

S v v r r
s x y x y

T

τ τ τ τ τ( ) = ( ) ( ) ( ) ( )



 	 (7)

Figure 2. Target and observer moments using bearings-only measurements
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Here v
x
τ( ) , vy τ( ) , rx τ( ) , ry τ( )  are relative values of speed and range in x  and y  coordinates 

respectively.
The relative state vector for the next time based on the present time state vector is given as:

S A S b C
s s
τ τ τ τ ω τ+( ) = ( ) ( )+ +( )+ ( )1 1 	 (8)

Here A τ( )  is the system dynamics matrix given as:

A
t

t

τ( ) =

























1 0 0 0

0 1 0 0

0 1 0

0 0 1

	 (9)

b
r r

r r
xo xo

yo yo

τ
τ τ

τ τ

+( ) = − +( )− ( )( )
− +( )− ( )( )




















1

0

0

1

1









	 (10)

and C τ( )  is the process noise, and ω is given as:

ω =

























t

t

t

t

0

0

2 0

0 2

2

2

/

/

	 (11)

The covariance of the process noise is given as:

Q E C C
T

τ ω τ ω τ( ) = ( )( ) ( )( )










	 (12)

Q

t t

t t

t t

t t

τ σ( ) =




















2

2 3

2 3

3 4

3 4

0 2 0

0 0 2

2 0 4 0

0 2 0 4

/

/

/ /

/ /





	 (13)

Here σ2  is the variance of the process noise.
The measurement equation for this application has only bearing angles, and the bearing angle 

β τ( )  is given as:
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β τ τ τ( ) = ( ) ( )( )−tan /1 r r
x y

	 (14)

The bearing measurement is always degraded with noise. So, the measured bearing is given as:

β τ β τ η τ
m ( ) = ( )+ ( ) 	 (15)

Here η τ( )  is the noise in the measurement. Here zero-mean additive process noise and 
measurement noise are considered. The system measurement equation is given as:

M h S
s

τ τ τ γ τ( ) = ( ) ( )+ ( ) 	 (16)

Here h τ( )  matrix gives the relation between measurement and state of the system, and the 
measurement noise matrix is represented by γ τ( ) . For BOT using measurements from a single 
sensor array, γ τ( )  is equal to η τ( )  as M τ( )  is a single measurement:

h R Rτ β τ β τ( ) = ( ) − ( )



0 0 cos / sin / 	 (17)

γ τ( )  is the measurement noise and is same as η τ( ) , and R  is the range of the target from the 
observer, given as follows:

R r r
x y

= ( )( ) + ( )( )τ τ
2 2

	 (18)

Measure of Nonlinearity
Mahendra Mallick et al. (2019) presented a new MoN for discrete-time nonlinear filtering problem that 
determines the deviation from linearity. They combined nonlinear function using the time evolution 
and measurement functions in a filtering problem. This MoN represents a measure of the mean square 
distance between the given nonlinear system and subspace of all linear systems in a functional space.

Equations (8) and (16) describe the discrete-time dynamic and measurement models for EKF, 
UKF, and MGBEKF (Koteswara Rao, 2005; Simon, 2006). The MoN is analyzed by considering 
the prediction and update cycle of the filtering algorithm during each time interval. For the BOT 
application, the functional space that contains all the linear and non-linear functions is taken as z(τ). 
The nonlinearity in BOT exists with the bearing measurement, which is tangentially related to the 
parameters taken in the target state vector. So, the state vector is a linear equation in four variables, 
and the measurement vector is a non-linear function in one variable. Hence the total functional space 
is taken as a combination of target state and measurement vectors.To analyze MoN, (8) and (16) are 
combined to form a single equation:

�z
S

M
Sτ
τ

τ
+( ) =

+( )
+( )

















1
1

1
= +( )( )+ +( )+ +( )q S N B

S
τ τ τ1 1 1 	 (19)
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Here:

q S
A S

h SS
S

S

τ
τ τ

τ τ
+( )( ) = ( ) ( )

( ) ( )
















1 	 (20)

N
C

τ
ω τ

γ τ
+( ) = ( )

( )
















1 	 (21)

B
b

τ
τ

+( ) = ( )















1
0

	 (22)

Substituting (20), (21) and (22) in (19), z τ +( )1  can be written as follows:

z
A S

h S

C bS

S

τ
τ τ

τ τ

ω τ

γ τ
τ

+( ) = ( ) ( )
( ) ( )















+

( )
( )
















+1
(( )













0
	 (23)

From (23), it can be said that z τ( )  is linear in N τ( )  and B τ( )  but nonlinear in S
S
τ( ) . The 

idea of measuring the deviation of the nonlinear function S
S
τ( )  from the best suited linear function 

is considered from (Sultana et al., 2019) as follows. 
Let us consider a functional space F  that gives a set of all linear and nonlinear functions of a 

random variable x with a specified distribution. Now divide the functional space into two sets such 
that one set contains all linear functions,   and other contains all nonlinear functions,  . Assume 
a nonlinear function q τ( )  that belongs to  . The MoN is the deviation of q τ( )  from linear functions 
set   and not from a single point in  . This is done by calculating distances from q τ( )  to every 
single point in L� and evaluating the lower bound on the distances. 

Consider J  as the shortest distance between any two points, say f1  and f 2 , in F . J  that suits 
the random nature of target parameters is given as follows:

J f f E f x f x
1 2 1 2 2

2
1 2

,
/

( ) = ( )− ( )



( )� � 	 (24)

Expression to find the closeness between q τ( )  and   using (24) can be given as in (25):

J J l q E l x q x
l lτ τ τ τ ττ τ= ( ) ( )( )




= ( )− ( )( )

( ) ( )
inf ,
ε εL L

inf � �
2
2
11 2/

	 (25)

Let l  be the set of all linear functions l x mx n( ) = +  with dimension as that of qτ . J τ  represents 
the un-normalized MoN. In the BOT application, till the process becomes observable, the error in 
the target state estimated parameters would be very high. As all the MoN values are calculated based 
on the target state covariance matrix, the MoN values will be too large, and hence they are normalized 
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to relate them with the MoN values at the time when the process becomes observable.The normalized 
version of J τ  is defined as follows:

V J tr P
qτ τ τ

= ( )





( )/
/1 2

	 (26)

Here P
q τ( )  is the covariance matrix of q xτ ( ) . Substituting for l x mx n( ) = +  in equation (32) 

and differentiating with m  and n , the un-normalized MoN is obtained as follows:

� ’J tr P P P P
q qx x qx

= −( )





−1
1

2 	 (27)

Normalized MoN, J  is given as:

V tr P P P tr P
qS qS qτ τ τ= − ( )( ) ( )−

−1
1
1
|

' / 	 (28)

Here P
q

 is the covariance matrix of q , Pτ τ| −1  is the covariance of S
S

, and P
qS

 is the covariance 
of   q  and S

S
. 

3. SIMULATION AND RESULTS

This research paper assesses MoN for three algorithms, EKF, UKF, and MGBEKF (Koteswara Rao, 
2005; Simon, 2006), by implementing in MATLAB PC environment. The measurements are assumed 
to be available continuously for every second. The target is assumed to be having a different initial 
course in different scenarios, which are given in Table 1. Scenario with an initial bearing of 20o is 
like the scenario with an initial bearing of 0o turned by 20o. Hence the bearing value is all taken 
as 0o for simplicity. The MoN values change with change in course or speed or range of a target. 
In BOT underwater applications, the speeds of the submarines are generally maintained constantly 

Table 1. Scenarios

Scenario number Initial Range 
(m)

Initial Bearing 
(deg)

Target Speed 
(m/s)

Observer Speed 
(m/s)

Target Course 
(deg)

1 3000 0 12 8 100

2 3000 0 12 8 110

3 3000 0 12 8 135

4 3000 0 12 8 140

5 3000 0 12 8 145

6 3000 0 12 8 148

7 3000 0 12 8 155

8 3000 0 12 8 163

9 3000 0 12 8 170
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and at lower speeds. If the speed is more or increasing, then the vehicle can be easily identified and 
tracked. So, a more generalized speed of target and observer are considered only with different target 
courses. The same process can also be analyzed with different target speeds.

The observer is maneuvering in its course based on the maneuver recommended for the observer 
in (Koteswara Rao, 2018). In the BOT application, only one type of measurement, i.e., bearing 
angles are available, and the parameters to be found are four (range in x and y coordinates, speed 
in x and y coordinates). So, to make the process observable, there must be a considerable change in 
bearing rate. In this process, the observer must make a maneuver that increases the bearing rate to a 
considerable amount so that the process becomes observable much faster.For BOT using maneuver 
recommendation, the observer first follows an initial line of sight direction for two minutes. Now, the 
side on which the target is present concerning observer is determined and the observer turns to move 
on the opposite side, i.e., if the target is on the right side of the observer, then the observer has to turn 
left side perpendicular to the line of sight for two minutes. The further maneuver of the observer is 
based on the angle on the target bow. If angle on target bow is less than 5o, then the same course of 
the observer is followed, if the angle on target bow is between 5o to 45o then the famous S- maneuver 
is followed, and if angle on target bow is greater than 45o, the observer follows L – maneuver. The 
noise in measurements is assumed to follow Gaussian distribution and is additive in nature.

The target state vector’s initial estimate for the implementation of algorithms is taken as:

S
s m m

T

0 0 5 5 5000 5000/ sin cos( ) = 

β β 	 (29)

The target velocities are each assumed as 5m/s. The target’s initial position is calculated based 
on the Sonar Range of the Day (SRD), which is assumed to be 5000m.The initial state covariance 
matrix can be taken as a diagonal matrix if the uniform distribution of the initial state estimate is 
considered and is given as in eq. (30). The noise in measurements is assumed to have a standard 
deviation of 0.33 degrees:

P diagonal

v

v

r

r

x

y

x

y

0 0

4 0 0 12

4 0 0 12

4 0 0 12

4 0 0

2

2

2

2

,

, /

, /

, /

,

( ) =
( )
( )
( )
(( )























/ 12

	 (30)

Monte-Carlo simulation (100 runs) is performed for the above-mentioned scenarios using 
MATLAB (Zhu et al., 2012) for all algorithms. The error in the estimated target parameters must be 
within the vicinity range of the weapon that has to be fired onto the target. The acceptance criteria 
are chosen based on the general torpedo homing zone values (as the application is an underwater 
scenario) and are evaluated in accordance with the true values calculated for the scenarios designed. 
The solution is said to be obtained only when the error in the estimated target parameters is less than 
the given values in acceptance criteria. Once the solution is obtained, the estimated target parameters 
can be used to release torpedo onto the target.

The performance is assessed based on the Root-Mean-Squared (RMS) error of the target 
parameters, and the solution is obtained based on the criteria of acceptance for 100 Monte-Carlo 
runs explained below.

Let the criterion to accept the solution is:

Error in range estimate <=2.66% of the true range	
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Error in course estimate <=1° 	
Error in speed estimate <=0.33m/s	

Table 2 gives the convergence timings in seconds for different algorithms. Different parameters 
in analyzing the target motion are estimated with an acceptable error at different times. The overall 
time to estimate all parameters is the total convergence time. The target and observer movements for 
scenario 9 using maneuver recommendation with the EKF algorithm is shown in Figure 3. It can be 
seen from Figure 3 that the observer follows maneuver recommendation and the estimated target path 
is nearer to the simulated true target path, i.e., the solution is converged faster.

Table 2. Total convergence timings of algorithms in seconds

Filter Scenario Number
Target Parameter

Range Course Speed Total Convergence Time

EKF

1 NC NC NC NC

2 NC NC NC NC

3 NC NC NC NC

4 NC 684 NC NC

5 NC NC NC NC

6 NC NC NC NC

7 587 568 421 587

8 202 163 244 244

9 212 149 254 254

MGBEKF

1 259 270 279 279

2 257 265 281 281

3 216 204 249 249

4 207 195 244 244

5 201 188 232 232

6 197 185 226 226

7 190 169 216 216

8 184 156 203 203

9 172 144 194 194

UKF

1 NC 738 NC NC

2 253 252 278 278

3 216 199 249 249

4 212 190 246 246

5 203 186 238 238

6 200 183 231 231

7 192 169 217 217

8 188 157 211 211

9 198 146 223 223

NC: No Convergence
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3.1. MoN of EKF
It is a known fact that EKF is unstable and a suboptimal nonlinear filter. The MoN for different 
scenarios using bearing measurements is calculated, and the following observations are made. MoN 
values for most of the scenarios start from low values and gradually increases to a maximum value, 
which then decreases gradually as shown in Figure 4. The solution is obtained when the MoN decreases 
after reaching its maximum MoN value. It can be observed from Table 3 data that the solution is 
obtained for the scenarios with maximum MoN values greater than 23. For scenarios 1 to 6, the MoN 
values are less than 23 and the solution is not obtained.

Table 3 gives the MoN values at convergence times of target parameters. The nonlinearity in the 
process is increasing with an increase in the target course angle. For all the target parameters, MoN 
values are increasing with an increase in the target course.

Figure 3. Target and observer moments using EKF for scenario 9

Figure 4. MoN values of EKF
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3.2. MoN of MGBEKF
MGBEKF is a stabilized form of EKF i.e., the gain in EKF is modified to attain stability in the 
estimation process. MoN values with MGBEKF for all scenarios are shown in Figure 5 and the 
maximum MoN value increasing withan increase in the target course. The maximum MoN values 
for MGBEKF, to obtain a solution, were observed to be less than 60. The same can be seen from the 
graph plotted in Figure 5. It can be observed from Table 4 that solution convergence is obtained for 
target parameters after the MoN reached its maximum value.

3.3. MoN of UKF
For the UKF algorithm, the solution was obtained for the scenarios with maximum MoN values less 
than 0.01 and greater than 1.9E-04. If the maximum MoN value is greater than 0.01, then the algorithm 
does not give a consistent solution. UKF uses Unscented transform to reduce the nonlinearity in the 
process. For this reason, the MoN values are very low as compared to other filtering algorithms. For 

Table 3. Normalized MoN values of EKF at different time samples

Scenario number RCT MoN CCT MoN SCT MoN Time Maximum MoN

1 NC - NC - NC - 5 13.22

2 NC - NC - NC - 7 13.22

3 NC - NC - NC - 166 14.67

4 NC - 684 0.79 NC - 166 16.54

5 NC - NC - NC - 162 18.63

6 NC - NC - NC - 160 20.07

7 587 1.36 568 1.43 421 0.67 157 24.31

8 202 7.35 163 29.37 244 2.59 155 31.28

9 212 11.01 149 38.47 254 3.41 154 40.12

RCT – Range Convergence Time

CCT–Course Convergence Time

SCT – Speed Convergence Time

Figure 5. MoN values of MGBEKF
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the scenarios represented in this paper, the MoN values are as showed in Figure 6. Unlike EKF and 
MEBEKF, the solution for UKF is obtained before the MoN reaches its maximum value (Table 5).

3.4. Discussion
From the above graphs and data, it can be observed that the solution convergence is obtained after the 
maximum MoN is reached for EKF and MGBEKF. With EKF, the maximum MoN values has to be 
greater than 23 to obtain a solution within the acceptance criteria for BOT using observer maneuver 
recommendation. Similarly, with MGBEKF, the maximum MoN values are supposed to be less than 
60 for solution convergence. The nonlinearity in the process is high for the scenarios evaluated using 
EKF than MGBEKF as MGBEKF is stabilised version of EKF. With UKF, the nonlinearity values are 
too low as the algorithm completely transforms the nonlinear function to a probability distribution of 

Table 4. Normalized MoN values of MGBEKF at different time samples

Scenario number RCT MoN CCT MoN SCT MoN Time Maximum MoN

1 259 3.79 270 3.09 279 2.56 145 9.89

2 257 4.97 265 4.41 281 3.42 153 10.1

3 216 8.09 204 9.95 249 4.21 162 15.9

4 207 9.65 195 12.05 244 4.53 160 17.5

5 201 10.96 188 13.83 232 5.77 157 19.4

6 197 12.03 185 14.99 226 6.51 155 20.7

7 190 14.57 169 21.17 216 8.11 154 24.1

8 184 17.94 156 29.31 203 10.67 154 29.4

9 172 28.04 144 32.23 194 13.43 155 37.4

RCT –Range Convergence Time

CCT–Course Convergence Time

SCT–Speed Convergence Time

Figure 6. MoN values of UKF
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a finite set of statistics whose mean, and covariance is equal to that of the nonlinear function. UKF 
gives optimized results for BOT with MoN between 1.9E-04 and 0.01.

4. CONCLUSION

An attempt is made to analyze the nonlinearity of the system with respect to different filtering 
techniques for underwater scenarios using bearings-only measurements. The observations provide 
limits of nonlinearity for which the filters provide consistent results using bearings-only measurements. 
With UKF, the nonlinearity in the process is reduced by transforming the function rather than 
linearizing or using the nonlinearities directly. This helps in obtaining the solution faster and with 
more accuracy. Observations also show that nonlinearity in the system increases with the target course. 
It is recommended to use UKF for BOT as it offers low nonlinearity when a few more seconds’ extra 
convergence time is acceptable to the users.
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Table 5. Normalized MoN values of UKF at different time samples

Scenario number RCT MoN CCT MoN SCT MoN Time Maximum MoN

1 NC - 738 1.00E-04 NC - 309 1.82E-04

2 253 1.37E-04 252 1.36E-04 278 1.69E-04 309 1.9E-04

3 216 2.23E-04 199 1.85E-04 249 2.68E-04 304 2.84E-04

4 212 2.51E-04 190 1.98E-04 246 2.93E-04 274 3.03E-04

5 203 2.75E-04 186 2.30E-04 238 3.20E-04 254 3.26E-04

6 200 2.99E-04 183 2.37E-04 231 3.38E-04 256 3.43E-04

7 192 3.68E-04 169 2.89E-04 217 3.94E-04 218 3.95E-04

8 188 5.02E-04 157 3.91E-04 211 4.88E-04 194 5.02E-04

9 198 6.13E-04 146 5.54E-04 223 5.29E-04 164 7.36E-04

RCT–Range Convergence Time

CCT–Course Convergence Time

SCT–Speed Convergence Time
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