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Abstract: Target tracking using bearings-only measurements in 

passive mode operation of sonar is a crucial issue of underwater 
tracking. Target motion in underwater scenario is analyzed using 
bearings-only measurements and calculating parameters like 
range, course and speed of the target. This is called Target Motion 
Analysis (TMA).  TMA process is highly non-linear as the 
measurements chosen are nonlinearly related to the selected 
target state vector and the traditional, optimal linear Kalman filter 
will not be appropriate to use.  It is presumed that the target is 
moving in straight line path with constant velocity, so Extended 
Kalman Filter (EKF) is proposed in this paper. The algorithm is 
simulated for several scenarios using MATLAB. Monte-Carlo 
runs are performed to evaluate the capability of the algorithm. 
 
Index Terms: Extended Kalman Filter, Statistical signal 
processing, Target motion analysis, Target tracking.  

I. INTRODUCTION 

  In underwater applications two dimensional target tracking 
using bearings-only measurement is often carried out. 
Bearing is the angle made by the line of sight from the 
observer to target with respect to some reference axis in the 
clockwise direction. A single observer platform is utilized to 
obtain the bearing measurements. The estimates for the target 
parameters of the target (range, course and speed) are 
acquired from these bearing measurements only. The 
mathematical method for obtaining these parameters is given 
in part A of Section II. The process of analyzing the target 
motion is non-linear due to the non-linear correspondence of 
bearing measurements with the target state vector. Hence the 
Kalman filter which is an optimal linear filter [5] is not 
proposed. The target is presumed to travel with constant 
speed and constant course, so the non-linearity in the model is 
reduced.  The non-linearity in the model is linearized by the 
EKF. Mathematical modeling for the filter is given in part B 
of Section II.According to S. C. Nardone and V. J. Aidala one 
can’t estimate the target parameters unless the observer 
makes changes its course or speed which is called 
maneuvering [4, 7]. Course is the angle made by the heading 
of the object with respect to some reference axis in the 
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clockwise direction. If the observer makes changes in its 
speed then it radiates more noise and there is a risk of being 
tracked by the target. So the observer approaches ‘S’ 

maneuver in course. The target observer scenario is as shown 
in figure 1. The observer is presumed to be initially at the 
origin ‘O’ and the target at position ‘T’. The observer follows 
‘S’ maneuver for tracking the target. 

 

 
Fig. 1 Initial target – observer scenario 

Section III presents the process of simulation and the 
different scenarios on which the simulation is done. The 
results are plotted as graphs and analyzed in the tables. 
Section IV gives the overall summary of the work done in 
this paper. 

II. MATHEMATICAL MODELING 

A. Target motion analysis 

Consider the observer is at position ‘O’ initially and the 

target is moving with constant speed and course. The 
observer state vector at time instant ‘n’[8] is given as 

𝑆𝑜(𝑛) = [𝑣𝑥𝑜(𝑛) 𝑣𝑦𝑜(𝑛) 𝑟𝑥𝑜(𝑛) 𝑟𝑦𝑜(𝑛)]𝑇 
where 𝑣𝑥𝑜(𝑛), 𝑣𝑦𝑜(𝑛) , 𝑟𝑥𝑜(𝑛) , 𝑟𝑦𝑜(𝑛)  are the velocity and 
range components of the observer in x and y coordinates 
respectively. The change in the observer position is obtained 
from its course and speed as  

𝑑𝑟𝑥𝑜(𝑛) = 𝑣𝑥𝑜(𝑛) ∗ sin 𝑜𝑐𝑟 ∗ 𝑡 
𝑑𝑟𝑦𝑜(𝑛) = 𝑣𝑦𝑜(𝑛) ∗ cos 𝑜𝑐𝑟 ∗ 𝑡 

where 𝑑𝑟𝑥𝑜(𝑛), 𝑑𝑟𝑦𝑜(𝑛)are the change in x-coordinate and 
y-coordinates of observer and 𝑜𝑐𝑟  is the observer course 
angle and t is the time period of one second. Similarly, target 
state vector is given as 

𝑆𝑡(𝑛) = [𝑣𝑥𝑡(𝑛) 𝑣𝑦𝑡(𝑛) 𝑟𝑥𝑡(𝑛) 𝑟𝑦𝑡(𝑛)]𝑇 
where𝑣𝑥𝑡(𝑛) , 𝑣𝑦𝑡(𝑛) , 𝑟𝑥𝑡(𝑛) , 𝑟𝑦𝑡(𝑛)  are the velocity and 
range components of the target in x and y coordinates 
respectively [1]. 
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The change in the target position is obtained from its course 
and speed as  

𝑑𝑟𝑥𝑡(𝑛) = 𝑣𝑥𝑡(𝑛) ∗ sin 𝑡𝑐𝑟 ∗ 𝑡 
 
𝑑𝑟𝑦𝑡(𝑛) = 𝑣𝑦𝑡(𝑛) ∗ cos 𝑡𝑐𝑟 ∗ 𝑡 
where𝑑𝑟𝑥𝑡(𝑛), 𝑑𝑟𝑦𝑡(𝑛)are the change in x-coordinate and 
y-coordinates of target and 𝑡𝑐𝑟 is the target course angle and t 
is the time period of one second. The relative state vector [1, 
3]of the target is given as 
𝑆𝑠(𝑛) = [𝑣𝑥(𝑛) 𝑣𝑦(𝑛) 𝑟𝑥(𝑛) 𝑟𝑦(𝑛)]𝑇                      (1)       
where 𝑣𝑥(𝑛), 𝑣𝑦(𝑛), 𝑟𝑥(𝑛), 𝑟𝑦(𝑛)are relative components of 
velocity and range in x and y coordinates respectively. The 
relative state vector for the next time period based on the 
present time state vector is given as 
𝑆𝑠(𝑛 + 1) = 𝐴(𝑛)𝑆𝑠(𝑘) + 𝜔𝐶(𝑛)         (2) 
where𝐴(𝑛) is the system dynamics matrix given as 

𝐴(𝑛) = [

1 0 0 0
0 1 0 0
𝑡 0 1 0
0 𝑡 0 1

]              (3) 

and 𝐶(𝑛)  is the process noise and ω is given as 

𝜔 = [

𝑡 0
0 𝑡

𝑡2 2⁄ 0

0 𝑡2 2⁄

]                                                         (4) 

The covariance of the process noise is given as 
𝑄(𝑘) = 𝐸[(𝜔𝐶(𝑘))(𝜔𝐶(𝑘))𝑇] 

𝑄(𝑘) = 𝜎2

[
 
 
 

𝑡2 0 𝑡3 2⁄ 0

0 𝑡2 0 𝑡3 2⁄

𝑡3 2⁄ 0 𝑡4 4⁄ 0

0 𝑡3 2⁄ 0 𝑡4 4⁄ ]
 
 
 

                       (5) 

where𝜎2 is the variance of the process noise. 
The measurement equation for this application has only 
bearing angles and the bearing angle 𝛽(𝑛)  is given as 
𝛽(𝑛) = tan−1(𝑟𝑥(𝑛) 𝑟𝑦(𝑛)⁄ )            (6) 
The bearing measurement is always degraded with noise. So, 
the measured bearing is given as 
𝛽𝑚(𝑛) = 𝛽(𝑛) + 𝑛(𝑛)                                                    (7) 
where𝑛(𝑛)  is the noise in the measurement. The system 
measurement equation is given as 
𝑀(𝑛) = ℎ(𝑛)𝑆𝑠(𝑛) + 𝛾(𝑛)            (8) 
whereℎ(𝑛) is the measurement model matrix and 𝛾(𝑛) is the 
measurement noise matrix. 

B. Extended Kalman Filter Algorithm 

The EKF linearizes the non-linearities in the state and 
measurement equations and then performs the Kalman 
filtering. Here the non-linearity is considered in the 
measurements obtained. So the measurement model matrix is 
linearized using Taylor series expansion and obtained as 
follows 
𝐻(𝑛) = [0 0 cos 𝛽(𝑛) 𝑅⁄ − sin 𝛽(𝑛) 𝑅⁄ ]     (9) 
where R is the range of the target from observer 

𝑅 = √(𝑟𝑥(𝑛))
2
+ (𝑟𝑦(𝑛))

2

           (10) 

The covariance of the noise in measurement equation is given 
as ∅(𝑛)  which is maximum level of Gaussian noise in 
bearings i.e., 0.330. The state vector time update equation is 
given as  
𝑆𝑠

−(𝑛) = 𝐴(𝑛 − 1) ∗ 𝑆𝑠
+(𝑛 − 1)                                      (11) 

The estimated state covariance matrix update equation [2] is 
given as 
𝑃−(𝑛) = 𝐴(𝑛 − 1) ∗ 𝑃+(𝑛 − 1) ∗ (𝐴(𝑛 − 1))𝑇 + 𝑄(𝑛 − 1)   (12) 

The Kalman gain [2] for the EKF is given as 
𝐺(𝑛) = 𝑃−(𝑛)𝐻𝑇(𝑛)(𝐻(𝑛) ∗ 𝑃−(𝑛)𝐻𝑇(𝑛) + ∅(𝑛))−1 (13) 
The measurement updates of the estimated state and 
estimated error covariance matrices are given respectively as 
follows 
𝑆𝑠

+(𝑛) = 𝑆𝑠
−(𝑛) + 𝐺(𝑛) ∗ 𝑍(𝑛)                                       (14) 

𝑃+(𝑛) = (𝐼 − 𝐺(𝑛) ∗ 𝐻(𝑛)) ∗ 𝑃−(𝑛) ∗ (𝐼 − 𝐺(𝑛) ∗

𝐻(𝑛))𝑇 + 𝐺(𝑛) ∗ ∅(𝑛) ∗ (𝐺(𝑛))𝑇          (15) 

III. SIMULATION AND RESULTS 

The observer is maneuvering in its course. So the observer 
initially has a course of 900 for two minutes and then turns 
1800 in order to attain the first leg in maneuvering and has a 
course of 2700.The observer is considered to take four 
minutes for complete maneuver of 1800. The target is 
assumed to be having different initial ranges, speeds and 
courses in different scenarios, which is given in Table I.  

TABLE I, Scenario for EKF algorithm 

Scenarios 
Parameters 

R B TS C OS 

1 3000 0 12 135 8 

2 4000 0 10 110 8 

3 3500 0 8 110 5 
where R is the initial range in meters, B is the initial bearing 
in degrees, TS is the speed of the target in m/sec, C is the 
course of the target in degrees and OS is the speed of the 
observer in m/sec. 
The simulation and filtering for 100 Monte-Carlo runs are 
carried out for the above mentioned scenarios using 
MATLAB [6]. The performance is evaluated based on the 
Root-Mean-Squared (RMS) error of the target parameters 
and the solution is obtained based on the criteria of 
acceptance explained as follows. 

The acceptance criterion of the solution for the mentioned 
algorithm for single Monte Carlo run is: 

Range error estimate<=8% of the actual range 

Course error estimate<=3o. 

Speed error estimate<=1m/s. 

 The convergence times of the solution for the three 
scenarios based on the above mentioned acceptance criteria 
for single run is tabulated in Table II. 

TABLE II, Convergence time in seconds for single run 

Scenario 

Convergence times in seconds 

Range Course Speed 
Overall 

convergence 
time 

1 242 252 248 252 
2 232 358 163 358 
3 232 426 175 426 
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For scenario 1, the estimated range, estimated course and 
estimated speed of thetarget obtained from simulation for 
single Monte-Carlo run is 242, 252 and 248 seconds 
respectively and the overall convergence time of the solution 
is obtained at 252 seconds. 

 

Fig. 2 Error in range estimate 

Figures 2 to 4 shows the error in the estimated range, course 
and speed of the target for single Monte-Carlo run. The error 
in estimated range is reduced after the observer changes its 
path, until then the target path is unobservable as shown in 
the figure 5. 
The acceptance criterion of the solution for 100 Monte-Carlo 
runs is assumed as 
Range error estimate<= (8%)/3 of the actual range 
Course error estimate<=1o. 
Speed error estimate<=0.33m/s. 
The convergence times of the solution for the three scenarios 
based on the above mentioned acceptance criteria is tabulated 
in Table III. 

 
Fig. 3 Error in estimated course 

 
Fig. 4 Error in estimated speed  

 
 

TABLE III, Convergence time in seconds for 100 runs 

Scenario 

Convergence times in seconds 

Range Course Speed 
Overall 

convergence 
time 

1 271 316 311 316 

2 327 431 326 431 

3 377 451 354 451 

 

 
Fig.5 Observer and target movements 

For scenario 1, the estimated range, estimated course and 
estimated speed of the target obtained from simulation for 
100 Monte-Carlo runs are 271, 316 and 311 seconds 
respectively and the overall convergence time of the solution 
is obtained at 316 seconds. 

Figure 5 shows the movements of the observer and target. 
The observer follows ‘S’ maneuver whereas the target moves 

in a straight line path. The error in estimated path is reduced 
after the observer changes its path, until then the target path is 
unobservable as shown in the figure 5. 
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Fig.6 RMS error in range estimate 
Figures 6 to 8 depicts the RMS errors in range, course and 
speed of the target for all the three scenarios respectively. 
The simulation is carried out for 100 Monte-Carlo runs so 
that the accuracy in estimation of the target parameters is 
increased.  

 
Fig.7 RMS error in course estimate 

 
Fig. 8 RMS error in speed estimate. 

IV. CONCLUSION 

An attempt is made to present the analysis of EKF for 
bearings-only target tracking. This is a crucial area of future 
research. Numerous scenarios were tested using Monte-Carlo 
simulations. But only few scenarios have been presented here 
which are sufficient to indicate the capability of the EKF. The 
filter works more efficiently only when the target becomes 
observable after the manoeuvring of the observer. Woefully, 
the EKF has no incorporated system to guarantee that 
anticipated estimates are used during covariance calculation. 
Regardless of this snag, the analysis demonstrates that 
significant enhancements in filter stability can be 
acknowledged by taking certain primary precautions with 

regard to initialization. 
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