

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1252

 ISSN No: 2456 - 6470 | www.ijtsrd.com | Volume - 2 | Issue – 1

International Journal of Trend in Scientific
Research and Development (IJTSRD)

International Open Access Journal

Novel Metrics in Software Industry

Dinesh Kumar Y

Assistant Professor, Department of CSE,

DIET, Visakhapatnam

Nuka Raju Kolli
Associate Professor, Department of CSE,

DIET, Visakhapatnam

ABSTRACT

The role of metrics in software quality is well

recognized. However, software metrics are yet to be

standardized and integrated into development practices

across software industry. While process, project, and

product metrics share a common goal of contributing to

software quality and reliability, utilization of metrics

has been at minimum. This work is an effort to bring

more attention to software metrics. It examines the

practices of metrics in software industry and the

experiences of some organizations that have developed,

promoted, and utilized variety of software metrics. As

various types of metrics are being developed and used,

these experiences show evidence of benefits and

improvements in quality and reliability.

Keywords: Software metrics, Cost of defects, State of

metrics, Metrics in software industry.

1. Introduction

It is yet to be widely recognized that metrics are a

valuable treasure an organization could have. They

provide measurement about schedule, work effort, and

product size among many other indicators. The more

they are utilized, the more effective and productive the

organization becomes. They also provide better control

over projects, and better reputation of the organization

and its business practices. Software metrics are utilized

during the entire software life cycle. Gathered data is

analyzed and evaluated by the project managers and

software developers. The practice of metrics involves

Measures, Metrics, and Indicators. A Measure is a way

to appraise or determine by comparing to a standard or

unit of measurement, such as the extent, dimensions,

and capacity, as data points. The act or process of

measuring is referred to as Measurement. While a

Metric is a quantitative measure of the degree to which

a component, system, or process posses a given

characteristic or an attribute; an Indicator represents

useful information about processes and process

improvement activities that result from applying

metrics, thus, describing areas of improvement.

Instituting a metrics program is a challenge for many

organizations, mostly the commitment to upfront

investment in gathering data necessary for building

useful metrics. In addition to time, cost, and resource

factors, developers are often reluctant to collect and

archive project data. A commonly cited reason is the

misuse of project data against developers and project

stakeholders. Team leaders and managers play an

important role in the adoption of measurement

programs as integral part of the software engineer

culture. They need to be convinced of (and committed

to) software measurement, and at the same time

promote this culture and reward their teams for it.

The area of software measurement has been highly

active for several decades. As a result, there are many

commercial metrics available in the market. Such

(affordable) metrics can be the starting point for small

organizations. However, much more work is needed to

standardize, validate, and integrate metrics into

software practices. This work brings needed attention to

software metrics and examines the current state of

metrics in software industry. The discussion is

motivated by cost of defects and description of

commonly used metrics.

2. Cost of Defects

To present a convincing argument for the benefit of

using metrics, one needs to highlight the incentives and

payoff. Here we refer to an article, authored by William

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1253

T. Ward [1], describing Hewlett-Packard’s (HP’s) “10 x

software quality improvement” initiative. The author

uses data from software metrics database and an

industry profit-loss model to develop a method to

compute the actual cost of software defects. The

database is an important element of HP’s software

quality activities and is a valuable source for different

tasks such as quality status reporting, resource

planning, scheduling, and calculation of cost defects.

Sources of data include product comparisons, analysis

of source code size and complexity, defect logging,

project post-mortem studies, and project schedule and

resource plans. The Software Quality Engineering

Group follows definite steps to discover, correct, and

retest a defect during testing activities (integration,

system, and/or acceptance). The estimated effort here is

about 20 hours, and it represents the average effort for

discovering and fixing a defect. This effort is calculated

using data points from multiple projects that were

tracked with the software quality database. Defect cost

can also be determined per project or phase, and cost

can be weighted based on programmer productivity or

product code size. For instance, the following formula

shows the cost per defect that is discovered and fixed

during the integration through the release phases of a

project.

Software Development Cost = SDRC + PL

Where

SDRC (Software Defect Rework Cost) is determined

by the amount of effort and expense required to find

and fix defects during the integration through release

phases, and PL (Profit Loss) is the revenue loss caused

by lower product sales throughout the entire post

release lifetime.

To illustrate, a product has about 110 software defects

found and fixed during testing. Each defect requires 20

engineering hours to identify and fix. The total work

effort is 2200 hours. At $75/hour, SDRC is

$165,000, and the rework cost per defect is $1500.

These expenses can be saved had metrics been used to

mitigate those defects. In addition, it should be noted

that the other calculation for defect cost is product

profit-loss. Here, missed market-window opportunities

result in loss of sales, profits, and competitiveness. This

illustrates typical losses that result from the lack of

metrics utilization.

3. Common Software Metrics

Unlike software engineering, other disciplines

capitalize on the power of quantitative methods to

measure their processes and activities. Based on Tom

DeMarco [2] statement, “You can’t control what you

can't measure”, these disciplines apply measurements

to gain better control of their projects and quality of

products. Although software engineering is new and

evolving discipline, experts have proposed quantitative

methods applicable to all aspects of software projects

with the goal of achieving high quality products. These

methods are related to different activities including:

Cost and effort estimation: Estimation models [3] help

better plan and execute software projects. One factor

that plays into the success of applying estimation

models is the experience of the organization to predict

effort and cost for new software systems. Mathematical

models, such Boehm’s COCOMO [4], Putnam’s

SLIM [5], and Albrecht’s Function Points [6], can be

used.

Productivity measures: Productivity models focus on

the human side of the project. A key factor to accurate

determination of productivity is having sufficient

information about the productivity of an individual (or

the team) in different scenarios, such as the type of

project, team structure, skills and backgrounds, tools,

and environment. Measures and metrics for assessing

the human side of the project are more challenging to

develop and apply than other measures and metrics [7].

Data collection: An important discipline, requiring

diligence and careful implementation. Although it has

obvious benefits for developing measures and metrics,

team members often dislike it. The common perception

among some team members is that data collection leads

to uneasy feeling of being “under pressure” and “at

risk” as collected data can be negatively used in

performance evaluations. The real risk here is that

inaccurate data can result in metrics that provide false

assessments.

Quality assessment: This activity covers different

measures including efficiency, reliability, flexibility,

portability, usability, correctness, and many others.

Standards that define quality means in terms of specific

project goals are needed. Here and with historical data,

objectives (in terms of measures) should be achieved or

exceeded to meet desired quality standards. Although

quality assessment is often applied during early in the

life cycle, it covers, along with “umbrella activities”,

the entire life cycle [7].

Reliability models: Even though reliability is seen as a

quality attribute, reliability assessment models are more

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1254

related to software failures, and are mostly applied

during testing. The models work well when it is

possible to monitor and trace failures during a test or

operation. Many quality models use reliability as a

factor, and the concept of reliability weights much in

the perception of quality.

Other activities include: Performance evaluation for

optimal solutions, Structural and complexity,

Capability maturity assessment, Management by

metrics, and Evaluation of methods and tools. These

activities are becoming an important part of Software

Engineering as each activity leads to the development

of software metrics, which some of them evolve into

assessment models.

Process, Project, and Product are three common

categories for software metrics. Below, we highlight

the key focus on each category.

Process Metrics: These metrics focus on software

development and maintenance. They are used to assess

people’s productivity (called private metrics),

productivity of the entire organization (called public

metrics), and software process improvement. Process

assessment is achieved by measuring specific attributes

of the process, developing a set of metrics based on the

identified attributes, and finally using the metrics to

provide indicators that lead to the development of

process improvement strategies. Private metrics are

designed to help individual team members in self-

assessment allowing an individual to track work tasks

and evaluate self-productivity. Pubic metrics, on the

other hand, help evaluate the organization (or a team)

as a whole, allowing teams to track their work and

evaluate performance and productivity of the process.

A good example is team’s effectiveness in eliminating

defects through development, detecting defects through

testing, and improving response time for fixes.

Project Metrics: Project metrics are tactical and related

to project characteristics and execution. They often

contribute to the development of process metrics. The

indicators derived from project metrics are utilized

by project managers and software developers to adjust

project workflow and technical activities. The first

application of process metrics often occurs during cost

and effort estimation activity. Metrics collected from

past projects are used as basis from which effort and

time estimates are made for new projects. During the

project, measured efforts and expended time are

compared to original estimates to help track how

accurate the project estimates were. When the technical

work starts, other project metrics begin to have

significance for different measures, such as production

rates in terms of models created, review hours, function

points, and delivered source code lines. Common

software project metrics include:

 Order of growth: Simple characterization of an

algorithm‘s efficiency allowing to compare relative

performance of alternative algorithms without being

focused on the implementation details.

 Lines of code: The Physical type is a count of lines

including comment and blank lines (not to exceed

the 25% of all lines of code). The logical type counts

the number of "statements" tied to a specific

programming language.

 Cyclomatic complexity: Measures the application

complexity and describes its flow of control.

 Function points: Reflects functionalities relevant to

(and recognized) by the end user. It is independent of

implementation technology.

 Code coverage: Determines statements in a body of

code that have been executed through a test run and

those statements that have not [8].

Other project metrics include coupling, cohesion,

requirements size, application size, cost, schedule,

productivity, and the number of software developers.

Product Metrics: These metrics focus on measuring key

characteristics of the software product. There are many

product metrics applicable to analysis, design, coding,

and testing. Commonly used product metrics include:

 Specification quality metrics: These metrics provide

indication of the level of specificity and

completeness of requirements.

 System size metrics: They measure the system size

based on information available during the

requirements analysis phase.

 Architectural metrics: These metrics provide an

assessment of the quality of the architectural design

of the system.

 Length metrics: They measure the system size based

on lines of code during implementation phase.

 Complexity metrics: They measure the complexity

of developed source code.

 Testing effectiveness metrics: They measure the

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1255

effectiveness of conducted tests and test cases.

Other product metrics focus on design features, quality

attributes, code complexity, maintainability,

performance characteristics, code testability, and

others.

4. Metrics in Software Industry

Software measurement started in the early 1970s in the

US and Canada. The SEI at Carnegie Mellon

University helped establish many measurement

programs giving a platform to help increase the use of

software metrics in software industry. Organizations

such as HP, Motorola, NASA, Boeing, AT&T, and

others use software metrics extensively [11]. In

Germany, since late 1980s companies like Siemens,

Bosch, Alcatel, BMW, and others started integrating

software measurement programs into their practices. To

present snapshot of the state of metrics in software

industry, examples from HP, Motorola, NASA, and

Boeing are presented in the section to highlight the

initial steps and effort toward integrating the practice of

measurement in software development. Many consider

these initiatives and efforts a significant contribution

toward promoting the practice of software metrics.

Hewlett-Packard (HP)

HP’s experience in incorporating a software metric

program has been one of the most reported initiatives in

the industry. Grady and Caswell [9] implemented the

program in an effort to improve software project

management, team productivity, and software quality.

These goals were achieved in the short term for

individual development projects. Grady and Caswell

categorized metrics into primitive or computed.

Primitive metrics are those directly observed such as

total development time for the project, number of

defects in unit testing, lines of code - the program size

and so forth. Computed metrics cannot be directly

observed, they are mathematical aggregations of two or

more primitive metrics. Examples of most widely used

computed metrics at HP include:

 Metrics for project scheduling cost of defects,

workload, and project control. For example:

 Average fixed defects/working day

 Average engineering hours/fixed defect

Average reported defects/working day

 Defects/testing time

 Percent overtime: Average overtime per week

 Phase: engineering months/total engineering

months

 End product quality metrics: For example:

 Defects/KNCSS (Thousand Non-Comment

Source Statements).

 Defects/Lines of Documentation (LOD) not

included in the program source code.

 Testing effectiveness metrics: Example indicator is

Defects/testing time.

 Testing coverage metrics: Example indicator is

Branches covered/total branches. This indicates what

percentage of the decision points in the program was

actually executed.

 Useable functions metrics: Example indicator is

Bang, which is "a quantitative indicator of net usable

functions from the user's point of view" [2]. Bang is

computed in two ways: For function-strong systems,

computing Bang is counting the tokens entering and

leaving the function multiplied by the weight of the

function. For data-strong systems, computing Bang

involves counting the objects in the database

weighted by the number of relationships of which it

is member.

 Productivity metrics: Example indicator is

NCSS/engineering month.

HP’s software metrics program served as a model for

many organizations and prompted a wide interest

among organizations seeking to improve the quality of

their products and software development processes.

NASA

NASA implements software metrics with emphasis on

improving reliability in software requirements

specification and source code. For complete

requirement coverage, test plans are also examined

without excessive testing and without expending

expenses. To improve reliability, they consider three

life cycle phases: requirements, coding, and testing.

Software metrics and error prevention techniques can

be applied throughout these phases to help improve

reliability [12].

Requirements Metrics: For reliability, NASA’s metric

tool (called ARM - Automated Requirements

Measurement) parses requirements document file line

by line searching for certain words and phrases. This

tool has been used in 56 requirement documents. The

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1256

developed measures include [12]:

 Lines of Text: Physical lines a measure of size.

 Directives: References to figures, tables, or notes.

 Continuances: Phrases that follow an imperative and

introduce the specification of requirements at a lower

level, for a supplemental requirement count.

 Imperatives: Words and phrases that command that

something must be done or provided. The number of

imperatives is used as base requirements count.

 Options: Words that seem to give latitude in

satisfying the specifications but can be ambiguous.

 Weak Phrases: Clauses that may cause uncertainty

and leave room for multiple interpretations.

 Incomplete: Statements that have TBD (To be

Determined) or TBS (To Be Supplied) clauses.

The ARM software does not evaluate whether the

requirements are correct or not, but evaluates the

vocabulary and the individual specification of

statements used to state the requirements. ARM also

evaluates the structure of the requirements document. It

identifies number of requirements at each level of the

hierarchical numbering structure. This information

helps indicate potential lack of structure that may

impact software reliability by increasing the difficulty

to make changes. It may also indicate unsuitable levels

of details that may constrain software design.

Design and Code Reliability Metrics: For design and

code reliability, NASA’s Software Assurance

Technology Center (SATC) developed a tool that

analyzes source code for architecture features and

structure and to help locate error-prone modules based

on source code complexity, size, and modularity.

Although there are different complexity measurements,

SATC uses Cyclomatic complexity (number of

independent test paths). They found that combining size

and complexity makes the most effective evaluation.

Large modules with high complexity tend to have the

lowest reliability. Such modules are reliability risk

because they are difficult to change or modify. SATC

uses the following metrics for object-oriented quality

analysis:

 Weighted Methods per Class (WMC)

 Response For a Class (RFC)

 Coupling Between Objects (CBO)

 Depth In Tree (DIT)

 Number Of Children (NOC)

These metrics lack industry guidelines, and therefore,

SATC developed guidelines based on NASA’s data and

are made available on NASA’s SATC website

(http://satc.gsfc.nasa.gov/).

Testing Reliability Metrics: For testing, SATC

developed a simulation model for error discovery and

for projecting number of remaining errors in the source

code and when such errors will be discovered. This

model is based on the Musa Model. The Musa model,

known as the “Execution Time Model”, is used to

evaluate computer resources with respect to (1)

reduction in the number of faults in a computer

program, (2) estimation of testing time necessary to

find and correct system errors to achieve an acceptable

level of errors in the code, and (3) determination of

software reliability based on the specified program

operating cycle and mean time to fault. Effective

verification aims to ensure that every requirement is

being tested. In order to make sure that the system has

the functionality specified, test cases are developed

(based on one system state) to test selected sets of

functions that are based on related sets of requirements.

Here, the requirement’s functionality is included in the

delivered system when the test is successful.

Assessment of traceability of requirements to test cases

is also performed, and therefore, each requirement is

tested at least once. Note that some requirements are

tested more than once since they are involved in

multiple system states.

In addition to reliability metrics applied throughout the

lifecycle, NASA developed IV&V Metrics Data

Program to gather, verify, sort out, store, and distribute

software metrics data. Collected data include metrics

and their associated problem and product data, allowing

users to explore the correlation between metrics and the

software. NASA’s metrics include: McCabe Software

metrics, Line of Code metrics, Requirement metrics,

Error metrics, and Halstead metrics. In an effort to

promote metrics utilization in the software industry,

NASA offers project non-specific data available in its

repository to the software community through the

Metrics Data Program website

(http://mdp.ivv.nasa.gov/).

Boeing

Boeing’s 777 program earned the company recognition

for achievements through its metrics program, among

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1257

other related software development initiatives [13]. The

Boeing 777 program is one of the most software

intensive commercial airplanes. It has near 2.5 million

newly developed lines of on-board code. Other

estimates indicate around 4 million additional lines of

code for customer options. The software has over one

hundred components corresponding to physical boxes

in the airplane’s control system. Many of them were

produced by third- party companies.

At the beginning of the program various software

measures were used by the suppliers and their

counterparts to present the status of the work. There

was a variety of measures that were hard to understand.

About half way through the 777 development program,

a uniform use of software metrics was instituted.

Suppliers were asked to report simple, standard

software metrics including test definition, resource

utilization, plans for software design, coding, and test

execution. In addition, actuals were collected for

software problem report totals.

Boeing’s implementation of the metrics program is

defined as follows: "Each supplier was requested to

prepare plans for their design, code, and test activities.

These plans showed expected totals and the planned

completion status for each of the biweekly reporting

periods until the task is complete”. Following that,

biweekly updates that show the actual development

status in terms of completed design, code, and tests are

requested. Changes to the estimated total size of the

effort are also reported along with plans to reflect new

totals. Information from the metrics is shared with the

system developers for improvement purposes. The

overall metrics program helped Boeing to improve

communications with supplier, adjust project plans in

conjunction with actual progress, and keep the project

on schedule. Key characteristics of Boeing’s metrics

program, that were instrumental in supporting this

process, include uniformity, frequent updates, clear

definition, objective measures, and re-planning, which

was very encouraged. In addition, Boeing’s effort to

define measures resulted in a 21-page set of instructions

on how to prepare metrics data. The two critical

features of the metrics plans were re-planning when

needed and past data was never changed.

Boeing’s experience shows that metrics were

invaluable as they helped in indicting soon enough

where program risk points are, allowing early

corrective actions. Early on, uniform metrics

encouraged application of reasonable checks on plans

and discussion of such checks. As a result,

communications with suppliers that were prompted by

metric data were as important as the metric data itself.

In addition, development metrics were used to track

progress against the plans for design, code, and testing.

They included software size and number of tests.

Milestones were indicated on metrics charts, associated

with the milestones are success criteria based on

design, code, and test completion.

5. Conclusion

The practice of software measurement is lacking behind

and yet to mature enough to be prompted widely across

software industry. Although the importance of metrics

was realized since early 1970’s, it is taking a slow pace

into the practice of software development.

Organizations, such as HP, Motorola, NASA, Boeing,

and other organizations, have been developing and

applying software metrics to their projects. Although

their metrics and those applied by others are based on

standards, some organizations tend to adapt these

metrics to their process and needs. This was clear in

NASA’s case were they detected a lack of aids to assist

in evaluating the quality of requirements or individual

specification statements.

Experiences discussed in this paper and many others

cases indicate when metrics are used early in the

development cycle they help detect and correct

requirement faults and prevent errors later in the life

cycle. Software metrics can be used at each phase of

the development as illustrated in section 4. Metrics can

identify potential problems that may lead to errors in

the system. Finding these potential problems decreases

over all development cost and prevents side effects that

may result from making changes later in the

development cycle. Using software metrics need not be

time consuming effort. Measurement activities such

daily tracking should be developed as a habit rather

than burden on developers and the organization

Effort made by the above discussed organizations (and

many others) is a step in the right direction for metrics

and software development. Being the main goal of this

article, dissemination and awareness of such effort and

the availability of much of such metrics to the software

community (often for free) is very much needed to help

forward the evolution of such initiatives and to broaden

the utilization of metrics.

International Journal of Trend in Scientific Research and Development (IJTSRD) ISSN: 2456-6470

@ IJTSRD | Available Online @ www.ijtsrd.com | Volume – 2 | Issue – 1 | Nov-Dec 2017 Page: 1258

REFERENCES

1. http://findarticles.com/p/articles/mi_m0HPJ/is_n4_

v42/ai_11400873, Hewlett-Packard Journal,

October 2012

2. DeMarco, Tom. Controlling Software Projects:

Management, Measurement & Estimation, Yourdon

Press, New York, USA, 2012.

3. http://sern.ucalgary.ca/courses/seng/621/W98/joh

nsonk/cost.htm

4. http://sunset.usc.edu/research/COCOMOII/index.

html

5. http://www.qsm.com/

6. Albrecht, A. J. and J.R. Gaffney, Software function,

source lines of code, and development effort

prediction: a software science validation, IEEE

Trans. on Software Engineering, 9(6), pp 639-648,

2013.

7. Pressman, R.S. Software Engineering: A

Practitioner’s Approach. 6th Edition, McGraw Hill

Publishing Company, 2015.

8. http://www.cenqua.com/clover/doc/coverage/intro.h

tml

9. Grady, R. B. and D. R. Caswell. Software Metrics:

13 Quantitative Analysis of English Prose

Establishing a Company-Wide Program. Engle- 14

Application to Hardware wood Cliffs, N. J.: Prentice-

Hall, 2015

