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Abstract 

There was rapid boom of software program development. Due to numerous reasons, the software program 

comes with many defects. In latest years, defect prediction, one of the principal software program engineering 

problems, has been inside the consciousness of researchers because it has a pivotal function in estimating software 

program errors and defective modules. Researchers with the intention of enhancing prediction accuracy have 

advanced many models for software program defect prediction. But, there are a number of crucial conditions and 

theoretical issues a good way to reap higher consequences. In this paper, we are able to be discussing SVM 

classifier, Naïve bayes classifier ,logistic regression, decision tree and KNN with cross validation is used to locate 

the accuracy. The effects show that consistency in high accuracy prediction turned into done the use of this 
strategies.  

 

Keywords— defect prediction; SVM classifier; Naïve bayes; Logistic Regression ,Decision Tree ,KNN. 

 

1 .INTRODUCTIONS 

Software quality can be measured by means of fault proneness information. a number of the most up-to-

date strategies attempted to investigate that whether or not to be had metrics in requirement and code could be used 

to pick out fault prone modules. It ought to be stated that, those metrics and requirement statistics have been 

collected throughout software program development cycle and extensive efforts have been deployed to build extra 

accurate defect prediction modules by way of those information to estimate the satisfactory of centered application 

modules. On this regard, unique techniques were proposed to expect defective modules in latest years, like statistical 
approaches, data mining and deep learning procedures. but, defect prediction modules could be applied in 

extraordinary phases in the following lessons: the first magnificence that is in testing phase consist of the subsequent 

models: seize-recapture models [1], neural network  models [2], measure technique primarily based on scalable 

approach based totally on supply code complexity [3]. Subsequent class, which changed into employed to expect 

wide variety of defects inside the software improvement system, is earlier than the real developing segment of the 

centered software. The following models are blanketed on this category: phase primarily based approach this is 

recommended in [4], An Ada-primarily based defect prediction technique is proposed in [5], and to expect 

defections at first degrees of programming, a model has been proposed with the aid of Smits [6]. 

The two primary issues, which frequently bring about defected facts, are excessive dimensionality and 

imbalanced training. In [7], a single classifier technique is supplied by means of Kehan et al. That is based totally on 

facts sampling and function choice to deal with the aforementioned problems. They don't forget 3 scenarios, such 

that function selection is based totally on two distinctive varieties of information, i.e., original information or 
sampled information. They concluded that the state of affairs that's characteristic choice have executed on sampled 

statistics and have modeled on unique statistics have significantly better performance than the other situations. 

Modules/lessons in software defect Prediction (SDP) can be categorized into : fault-susceptible and not 

fault-susceptible. SDP models can be constructed using the fault records and the software program metrics obtained 

from previous software releases or similar software projects [8,9]. After constructing the model, it can be 

incorporated into present day initiatives and assist classify all the modules/instructions as being fault-prone or now 

not fault-prone [10]. The usage of these consequences, the software practitioners can now make an informed 
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decision to work on all of the fault prone regions in the course of the early ranges of development. 

For instance, if only 30% of testing assets were assigned to a certain software program, having 

understanding of all of the fault-susceptible regions will make sure that each one the available sources are allotted 

toward the correction of the modules/instructions in these regions [11]. Thereby, resulting in a excessive first-rate 

and maintainable that is of high quality and produced with the given time body and budget [12]. A great a part of 

SDP studies interest is targeted in the detection of whether software components are defect inclined or now not by 

means of relying on the usage of software metrics drawn from the code [13]. At the same time as specific machine 

studying algorithms have been used in supporting with the type of software additives as being defect-inclined or 

now not with the aid of trying to nice rules or patterns inside information, none of them has proved be correct on a 

consistent basis. A number of these strategies used consist of combined algorithms, parametric models, machine 
learning techniques and statistical strategies. But, before concluding on whether this hassle is largely unsolvable, 

there may be need for the identity of the satisfactory prediction technique to help with predicting a trouble primarily 

based on the context. 

This examine will rely on open source software program repositories to research key software program 

defect prediction models including SVM classifier, Naïve Bayes classifier, Decision tree, Logistic Regression , 

KNN. By means of giving clues approximately these models, and the way they react with unique datasets, we do 

hope that consequences acquired on this have a look at will assist growth confidence in them. Key findings of this 

study display that the usage of stacking more than one classifiers can be of use to defect prediction. 

 

II. LITERATURE REVIEW 
They four varieties of machine learning task which include reinforcement, semi-supervised, unsupervised 

and supervised learning. Although supervised and un-supervised learning remain the most popular task group. 

Supervised learning is machine learning method that involves the usage of labelled training data, which 

houses various training examples to infer a characteristic. The training instance includes an input object and the 

favored output price and consists of the regression and classification of supervised learning responsibilities [32]. The 

regression category mission focuses on non-stop variety version constructing even as the class studying project 

focuses on constructing predictive version that functions within a discreet range. Instance of supervised device 

learning techniques include aid vector system, neural network, linear regression, Bayesian learning, instance 

primarily based learning, rule learning and learning classification [33]. 

The speedy increase of studies in system studying has resulted in the creation of various learning 

algorithms that can be used throughout distinct programs [34]. Additionally, the potential of machine learning 

algorithms to clear up-real global troubles will often decide its remaining value making the duplicate and application 

of algorithms in new tasks essential to the sphere’s progress. However, the contemporary research landscape 

functions numerous guides concerning software defect prediction model improvement. These may be located into 

categories based on and classification techniques. 

Design [42] and code metrics [43] are used to evaluate the accuracy of fault prediction models which can 

be to be had earlier than and after the device is carried out. Code metrics and layout metrics are to be had most 
effective after the machine is applied and earlier than the coding has began [44]. Models are primarily based on the 

data from one launch of a big telecommunication device evolved with the aid of Ericsson the use of linear 

regression. Of their have a look at, prediction made after the device is 34% more correct than earlier than the 

machine. The range of metrics to be had earlier than the implementation is 43% and after the implementation is 58% 

[44] however the performance of the machine is identical whilst metrics are not used. Professionals use Statistical 

techniques and machine getting to know techniques to anticipate the inability inclination of the code of their 

software. Of their examine, execution of lines of code (LOC) metric is nicely and accuracy of loss of cohesion on 

methods (LCOM) metric is remarkable but its end result pleasant is low . 

Aleem et al [40], after suing various machine learning strategies to behavior a have a look at on 15 datasets 

(KC3, KC1, CM1, AR6, and AR1 and many others) determined out that bagging, multilayer perceptron (MLP) and 

support vector system (SVM) carried out high degrees of overall performance and accuracy. 

Bibi et al. follow a device learning technique to the trouble of estimating the range of defects called 

Regression via category (RvC) [41]. RvC to start with robotically discretizes the variety of defects into some of fault 
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classes, then learns a version that predicts the fault magnificence of a software gadget. eventually, RvC transforms 

the class output of the model back right into a numeric prediction. 

Challagulla et al. examine unique predictor models on four distinct actual- time software program defect 

datasets [45]. Their effects display that a combination of 1R and example-based totally gaining knowledge of along 

with the Consistency based Subset evaluation method gives a particularly better consistency in accuracy prediction 

as compared to different methods. They also declare that length and complexity metrics are not enough for 
appropriately predicting actual-time software program defects. 

Ratzinger et al. examine the influence of evolution sports along with refactoring on software defects [46]. 

In a case look at of 5 open source tasks they used attributes of software program evolution to are expecting defects 

in time intervals of six months. They use versioning and trouble tracking structures to extract 110 statistics mining 

features, which are separated into refactoring and non-refactoring associated functions. Those features are used as 

input into type algorithms that create prediction models for software defects. 

An investigation performed by [48] relied on a unique benchmark framework in comparing and predicting 

software defect. The activities concerned comparing and comparing distinctive getting to know schemes to the 

selected one and the usage of it to build a predictor that has all of the historical records [47]. This predictor is now 

equipped to predict any defect in any new data. 

III. RELATED WORKS 

In latest years, wide kind of machine learning techniques have been proposed and implemented to 
extraordinary domain names by researchers. However, in defect prediction context, to the pleasant of our 

understanding few works were performed which we are able to evaluate in this phase. 

Y. Chen and et al [14] reviewed the preceding work in subject of defect management and software 

prediction. They introduce a singular method for defect prediction by way of the use of data mining strategies and 

claim that their proposed model is able to lead the developmental levels of a brand new software program. In the 

beginning, defect database is generated that is made from all of the statistics about the defect facts within the 

software life cycle. After that, through mining techniques, especially Bayesian network, the defect prediction 

version is built for the going. 

An stronger multilayer perceptron neural network is explored via [15], and also fault-proneness prediction 
modeling is completed through comparative evaluation for software program systems and then tested by means of 

NASA’s Metrics data program (MDP). Gabriela Czibula et al. present in [16] a singular classification model 

regarding relational association rules mining. 

Figuring out faulty modules is not always a clear-cut challenge. To reap excessive overall performance, 

diverse issue have to be considered in defect prediction models. Ishani and Arora and et al. in [17] introduce a 

number of them in element. Their studies display that those issues are caused by the following issues: 

 Relationship between Attributes and fault. 

 No benchmark to evaluate overall performance correctly. 

 Problems with defect prediction in cross-mission. 

 No to be had widespread framework. 

 Economic boundaries of defect prediction in software program. 

 Class imbalance trouble. 

Besides the above techniques, association based type approach is taken into consideration on this context 

by Baojun Ma and et al [33]. They use CBA2 algorithm and evaluate it with the opposite rule primarily based type 

strategies. Their experimental effects indicates CBA2 acts higher than C4.five and RIPPER algorithms. 

Commonly, defect prediction manner is designed through supervised machine learning (classification), 

that's called within-project defect prediction (WPDP) due to the fact all processes are conducted ‘within’ a single 

software program mission. Some preprocessing techniques together with characteristic selection and normalization 

are widely implemented in these studies [18], [19], [20]. But, WPDP has some intrinsic boundaries since training 

models without records of defect statistics generate the categorized dataset. Researchers have also proposed 

strategies to improve cross project defect prediction (CPDP) [19]–[23], [25], [26] this is defect prediction for 

unlabeled datasets [27], [28]. CPDP normally has low performance. 
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Overall performance. But, most CPDP strategies have a few limitations that have some giant consequences 

on the performance as an instance; they need to use identical metrics if source data set and goal statistics set had 

heterogeneous metrics. If you want to clear up this problem Jae chang Nam and Sunghun Kim [24] supplied a new 

algorithm. They proposed heterogeneous defect prediction (HDP) technique for predicting defects across challenge 

sets (whether or not heterogeneous metrics exist in dataset). Indeed, source project and destination project may be 

exceptional from each other. We classified most crucial latest studies based on 3 classes as they're taken into 

consideration in table 1. Six parameters are mentioned in details for techniques in table 1. In general, the following 

consequences are located from table 1 (Taxonomy table) by means of scrutiny of the models: 

 The studying strategies are deployed for pattern classifications in most techniques. 

 The class imbalanced problem changed into now not taken in to account in most current studies and they 
try to strong their strategies. 

 A great range of methods did now not do not forget preprocessing step, at the same time as some of others 

have complicated approach for doing it. 

 This paper offers a manner to improve defect prediction via leveraging the strength of logistic 

regression,SVM and KNN in machine learning models. The steps are discussed in detail after introducing 

machine learning techniques . 
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TABLE 1. A taxonomy of the related works along with the proposed method 

IV. MACHINE  LEARNING TECHNIQUES 
 

The proposed scheme is shown in the Fig.1.  

 

 Fig.1. the general view of the proposed model 

Following that, every step is discussed in detail. The scheme is designed based totally on our test, that are include 

four steps as it is shown in Fig.1. in this we are going to use two algorithms on the way to conduct this research. The 

first set of rules is SVM algorithm,we plot raw data as factors in an N-dimensional area(n= no of functions you have 

got).The fee of every function is then tied to a particular coordinate, making it clean to categorise the data. The 

second set of rules we use naïve bayes set of rules to assume that the presence of a selected characteristic in a 

category is unrelated to the presence of every other function. When the getting to know manner is accomplished, it's 
far first spiltted and educated to get tested to conduct classification. This algorithms pleasant suits for selection 

boundary, speedy and quick classification can be completed with the aid of this algorithms. 

A.  Support vector machine 

 Support Vector system (SVM) is introduced in COLT-ninety two through Boser, Guyon & Vapnik. it's far 

theoretically a completely well motivated set of rules. Vapnik & Chervonenkis (1960s) evolved SVM from 

Statistical mastering theory. In SVM, records is being differentiated into two units; training set and testing set. Each 

file within the training set consists of one target fee or elegance call and carries some properties referred to as 

watched variables. SVM discovers a direct dividing hyper- plane. The equation for partition is ax+by way of=c. 

SVM is applied as a part of numerous fields. SVM is applied as a part of two fold association errands. SVMs are any 

other promising non-direct, non-parametric order approach. SVM is utilized as part of the restorative diagnostics, 

optical individual reputation, electric powered load anticipating and different several fields.[35] 

  

 
 

Fig.2. SVM Scheme 
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SVM may be of two types: 

1.Linear SVM: Linear SVM is used for linearly separable statistics, which means if a dataset may be categorized 

into two instructions by using using a single straight line, then such data is termed as linearly separable information, 

and classifier is used known as as Linear SVM classifier. 

2. Non-linear SVM: Non-Linear SVM is used for non-linearly separated statistics, which means if a dataset can't be 

categorized by using a straight line, then such data is named as non-linear facts and classifier used is known as as 
non linear SVM classifier. 

B. Naïve Bayes algorithm 

This classification algorithm that works with both multi-magnificence and binary ( magnificence) classification 
troubles and can be pretty simple to understand when described the use of specific or binary enter values [29]. Naïve 

Bayes permits extension to actual fee attributes, which is likewise called the Gaussian Naïve Bayes. Working with 

the ordinary distribution (Gaussian) is quite simple, all one has to do is find the training records to estimate the 

standard deviation and mean. 

 

 

  

 

 

 

Fig.3. NAÏVE BAYES Scheme 

Naïve Bayes algorithm is a supervised getting to know set of rules, that is based totally on Bayes theorem and used 

for fixing class problems. It's far specially used in textual content category that consists of a high-dimensional 

education dataset. Naïve Bayes Classifier is one of the easy and handiest classification algorithms which allows in 

constructing the quick machine learning models which could make quick predictions. It's far a probabilistic 

classifier, because of this it predicts on the premise of the chance of an item. Some popular examples of Naïve 

Bayes set of rules are unsolicited mail filtration,Sentimental analysis, and classifying articles[36].  

C. Decision tree classification algorithm 

A extreme trouble that most auto-encoders need to deal selection Tree is a Supervised getting to know technique that 

may be used for both category and Regression problems, however mostly it is desired for fixing category problems. 

It's far a tree-established classifier, wherein inner nodes constitute the capabilities of a dataset, branches represent 

the selection policies and every leaf node represents the final results. In a decision tree, there are  nodes, which are 
the decision Node and Leaf Node. Selection nodes are used to make any choice and feature multiple branches, 

whereas Leaf nodes are the output of these decisions and do no longer incorporate any in addition branches. The 

selections or the check are completed on the idea of functions of the given dataset. It's far a graphical illustration for 

buying all the possible answers to a trouble/decision primarily based on given situations. It's miles referred to as a 

choice tree due to the fact, just like a tree, it begins with the foundation node, which expands on further branches 

and constructs a tree-like shape. In an effort to build a tree, we use the CART set of rules, which stands for class and 

Regression Tree set of rules. A decision tree sincerely asks a query, and based on the answer (sure/No), it further cut 

up the tree into subtrees . Below diagram explains the general structure of a decision tree:[37] 
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Fig.4. Decision Tree Scheme 

 

D. Logistic Regression 

Logistic regression is one of the most popular Logistic regression is one of the most famous machine learning 

algorithms, which comes below the Supervised machine learning method. It's far used for predicting the categorical 
established variable the use of a given set of independent variables. Logistic regression predicts the output of a 

specific established variable. Therefore the outcome should be a categorical or discrete fee. It is able to be both yes 

or No, zero or 1, true or false, and so on. But in preference to giving the exact cost as 0 and 1, it gives the 

probabilistic values which lie among 0 and 1. [38] 

 

Fig.5. Logistic Regression Scheme 

 Logistic Regression is a lot similar to the Linear Regression except that how they may be used. Linear Regression is 

used for solving Regression problems, while Logistic regression is used for solving the classification troubles. In 

Logistic regression, instead of fitting a regression line, we healthy an "S" formed logistic characteristic, which 

predicts two maximum values (0 or 1).The curve from the logistic function suggests the likelihood of something 

consisting of whether or not the cells are cancerous or not, a mouse is obese or not based on its weight, and many 

others. Logistic Regression is a huge machine learning set of rules because it has the ability to provide chances and 

classify new information the usage of continuous and discrete datasets. Logistic Regression may be used to 

categorise the observations the use of exclusive kinds of records and may without problems determine the only 

variables used for the category.  
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E. KNN Algorithm 

k-Nearest Neighbour is one of the only system getting to know algorithms primarily based on Supervised gaining 

knowledge of method. K-NN set of rules assumes the similarity between the new case/data and available cases and 

put the brand new case into the category that is maximum just like the available categories. K-NN set of rules stores 

all of the available facts and classifies a brand new facts factor primarily based at the similarity. This means when 

new facts appears then it may be effortlessly categorized into a nicely suite category by means of using K- NN set of 

rules. K-NN set of rules may be used for Regression as well as for class but in general it's miles used for the 

category troubles. K-NN is a non-parametric set of rules, which means it does not make any assumption on 

underlying records. It's also called a lazy learner algorithm as it does not analyze from the education set at once 

alternatively it stores the dataset and on the time of type, it plays an action on the dataset.KNN algorithm on the 
learning phase simply stores the dataset and while it receives new records, then it classifies that records into a class 

that is tons just like the new facts.[39]  

 

Fig 6: KNN Algorithm 

 

V. METHODOLOGY 

This section presents the methodological gear, steps and tactics utilized in reaching the observe goals. 

 A. Data Preparation 

The use of Machine-learning techniques is essential in attaining software program reusability, maintainability and 
exceptional because it enables with finding the bas scent, ambiguity, fault and defect in software program. Carrying 

out this requires software program default prediction techniques, which rely on statistical strategies to any software 

defects [24]. But, software program detection can also be performed through machine learning strategies. 

B.  Datasets 

A set of NASA information were accumulated and research is being made for this reason. In current years, those 
datasets have drawn a notable quantity of attentions from researchers. The information of the datasets are proven in 

the table. Pre-processing allows shape the information into a shape that the category engine can use [30,31]. Key 

benefits of pre-processing consist of normalizing numeric facts and helping fill in missing information.  

The experiments depended on datasets drawn from the PROMISE facts repository amassed from actual NASA 

software tasks and diverse software modules. The benchmarking involved the use of public area datasets. This 

benchmarking manner allows other researchers evaluate their studies. A number of the code metrics used inside the 

datasets include McCabe’s cyclomatic complexity, code length and Halstead’s complexity among others. The 

outline of Datasets is summarized inside the table 1. The goal variables inside the NASA MDP facts units are binary 

in nature, 1: real, 0: false. Table 2 suggests the overall performance matrices that are used in this have a look at. 

Python programming and Scikit-analyze (machine learning framework) is used in data examination.  

 

Variables Description Metrics 

Type 

Loc Line count of Code McCabe 

v(g) Cyclomatic Complexity McCabe 

ev(g) Essential Complexity McCabe 

iv(g) Design Complexity Halstead 
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Table 1: NASA MDP Dataset 

 

C. Preprocessing Step (normalization) 

On account that each sample carries unique values which could vary substantially, function scaling, which is 
considered one of popular techniques in normalization, is performed to normalize capabilities (impartial variables). 

To achieve this aim, standardization technique is selected and used for this segment. Standardization is broadly used 

for normalization in lots of system getting to know algorithms. Feature normalization is performed according to the 

formula below, 

 

Where xi 
 defines the ith data dimension, µ is average, and defines standard deviation of that dimension. 

Datatypes are printed,shape of the data is taken, no missing values and outliers are removed.After removing    we 

got Highest mean =109.635 and lowest value =-68.89. The below table gives the result of dataset (log) after 

removing outliers.   

Count 168 

Mean 6.75 

Std 0.807 

Min 6.0 

25% 6.0 

50% 7.0 

max 8.0 

    

N Total operators and 

Operands 

Halstead 

V Volume Halstead 

L Program Length Halstead 

D Difficulty Halstead 

I Intelligence Halstead 

E Effort Halstead 

B Number of Bugs Halstead 

T Time estimator Halstead 

lOCode Line Count Halstead 

lOComment Line count of Comments Halstead 

lOBlank Count of Blank Lines Halstead 

lOCodeAndCommen 

t 

Lines of Comment and 

Code 

N/A 

Uniq_Op Unique Operators Halstead 

   

Uniq_Opnd Unique Operands Halstead 

Total_Op Total Operators Halstead 

Total_Opnd Total Operands Halstead 

branchCount Flow Graph’s Branch 

Count 

Halstead 

Problems Reported Defects N/A 
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*The above graphs represents distribution plots . 

 

D. Classification 

Solving the translation problem allowed the creation of numerous classification algorithms, which can be 

customized in line to flows to defect, fragments or machining source code tokens. Each classifier comes with different 
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strength and weaknesses aimed to fit specific needs. Finally, the performance of the mentioned algorithms is 

measured based on the performance metrics in Table 2. 

Table 2: Performance Matrices 

Performance 

Matrices 

Formula 

Accuracy  

 
F1  

  
 

 
 

 
MAE ⃓True values-Predicted values⃓ 

 

E. K-Fold Cross Validation 

After normalization step, a 10-fold cross-validation strategy is applied to compute the parameters of the test set. 

Each dataset is randomly partitioned into K subsets, each of which is equal to others in terms of its size and one of 

which is considered as test data every time while the other k-1 subsets are considered as training data. This action 

should be reiterated ten times for running same algorithm on data. Finally, the mean  of these k runs is computed. 

 

 

VI. RESULTS 

The results of the different ML techniques for defect prediction using various datasets are shown in Table 3, 4,5,6,7 

and 8. The training was performed     based on 10-fold cross validation.                                             

Table 3: Performance of Supervised  Learning Algorithms 

Datasets Svm Naïve 

Bayes 

Logistic 

regression 

 

Decision tree 

CM1 89.1 84.4 89.1 85.4 

KC1 81.6 78.4 79.1 76.6 

KC2 80.89 81.9 81.2 81.5 

KC3 73.1 78.89 75.59 71.3 

KC4 80.2 78.8 81.19 78.6 

MC1 80.4 60.3 78.78 62.5 

MC2 85.9 84.9 87.75 84.4 

PC1 96.5 97.18 70.82 97.0 

PC2 62.61 60.31 97.63 85.8 

PC3 96.54 97.18 70.82 95.4 

PC4 89.71 60.31 97.63 79.9 

PC5 96.2 97.18 92.1 97.7 

JM1 80.77 60.31 96.8 79.9 

MW1 72.9 97.1 84.42 79.9 

Mean 84.6 82.6 86 82.5 
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Table 4: Performance of classifiers with  cross validation 

Datasets  Svm Naïve Bayes KNN 

 

CM1 91.3 83.43 82.1 

KC1 71.8 74.6 85.9 

KC2 80.86 80.54 96.5 

KC3 73.8 70.3 62.61 

KC4 80.2 75.6 96.54 

MC1 72.4 61.5 89.71 

MC2 90.73       82.48 96.2 

PC1 93.5 94.18 96.5 

PC2 75 57.31 62.61 

PC3 91 96.18 96.54 

PC4 89.32 52.31 89.71 

PC5 84.9 92.18 96.2 

JM1 90.15 58.31 80.77 

MW1 94.07 95.18 72.9 

Mean 85.6 81.6 85.87 

 

 
Table 5: F-measure Performance of Supervised  Learning Algorithms 

 

Datasets  Svm Naïve 

Bayes 

Logistic 

regression 

 

Decision tree 

CM1 86.1 81.4 85.1 83.43 

KC1 78.6 74.4 78.1 74.6 

KC2 76.89 77.9 78.2 80.54 

KC3 71.1 75.89 71.59 70.3 

KC4 74.2 74.8 79.19 75.6 

MC1 78.4 59.3 76.78 61.5 

MC2 81.9 83.9 84.75 82.48 

PC1 88.5 94.18 68.82 96.02 

PC2 66.61 57.31 94.63 83.89 

PC3 89.54 96.18 67.82 92.42 

PC4 85.71 52.31 95.63 78.9 

PC5 92.2 92.18 89.1 96.77 

JM1 77.77 58.31 95.8 78.9 

MW1 69.9 95.18 82.42 77.94 

Mean 80.6 78.6 83.87 77.51 

 

 

Table 6: F-measure Performance of classifiers with cross validation. 

 

Datasets  Svm Naïve Bayes KNN 

 

CM1 80.2 75.31 76.78 
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KC1 80.4 96.18 84.75 

KC2 85.9 81.4 68.82 

KC3 96.5 74.4 94.63 

KC4 62.61 77.9 67.82 

MC1 96.54 75.89 95.63 

MC2 89.71 74.8 89.1 

PC1 96.2 59.3 95.8 

PC2 84.9 83.9 80.54 

PC3 90.15 94.18 70.3 

PC4 94.07 57.31 75.6 

PC5 78.1 96.18 61.5 

JM1 76.02 52.31 80.14 

MW1 80.01 92.18 79.12 

Mean 83.5 78.16 83.87 

  

 

Table 7: MAE Performance of Supervised Learning Algorithms 

 

Datasets  Svm Naïve 

Bayes 

Logistic 

regression 

 

Decision tree 

CM1 0.08 0.11 0.08 0.07 

KC1 0.12 0.27 0.12 0.25 

KC2 0.19 0.23 0.15 0.43 

KC3 0.20 0.29 0.20 0.42 

KC4 0.18 0.24 0.19 0.31 

MC1 0.17 0.38 0.18 0.54 

MC2 0.14 0.35 0.14 0.32 

PC1 0.03 0.07 0.03 0.02 

PC2 0.27 0.33 0.10 0.32 

PC3 0.07 0.07 0.02 0.37 

PC4 0.11 0.22 0.53 0.21 

PC5 0.09 0.07 0.49 0.40 

JM1 0.80 0.22 0.04 0.51 

MW1 0.14 0.47 0.25 0.54 

Mean 0.18 0.22 0.17 0.28 

 

Table 8: MAE Performance of Ensemble Learning Algorithms 

Datasets  Svm Naïve Bayes KNN 

 

CM1 0.09 0.07 0.49 

KC1 0.80 0.33 0.04 

KC2 0.14 0.07 0.25 

KC3 0.20 0.22 0.15 

KC4 0.04 0.58 0.20 

MC1 0.12 0.87 0.19 

MC2 0.10 0.35 0.18 

PC1 0.14 0.48 0.14 

PC2 0.04 0.15 0.03 
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PC3 0.12 0.02 0.10 

PC4 0.14 0.09 0.02 

PC5 0.25 0.31 0.15 

JM1 0.52 0.23 0.14 

MW1 0.19 0.12 0.18 

Mean 0.17 0.24 0.17 

 

 

 

graph of KNN for each K's value how testing score change 

 

 

Figure 1: Accuracy Chart of Different algorithms 
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Figure 2: F-Measure of Different Algorithms 

 

 

Figure 3: MAE Performance of Different Algorithms 

Based on MAE score chart (Figure 3), all  classifiers  have lowest MAE score where Decision tree is on top. KNN 

with cross validation, logistic and SVM with cross validation acquired     the lowest score among all the learning 

algorithms. Performance of both algorithms are slightly different. 

Overall, Logistic regression performed well in all 3 performance measures and out performed all other algorithms. 

Algorithms with cross validation  performed relatively well except naïve bayes. In supervised learning, SVM and 

logistic regression showed promising performance. In cross validation, SVM and  KNN both performed well in all. 

Decision tree and Naïve Bayes performance is low compared to other classifiers. The proposed method has given 

the accuracy of 0.8515. 

VII. CONCLUSION 

Recent years have seen a growth in the development of software-based systems even though the quality of the 

system  has to be best before delivery to the end-users. Software quality can be enhanced through several quality 
metrics such as ISO standards, CMM, and software testing. The need for software testing grows with each day, and 

its efficiency can be improved by using software defect prediction. The objective of this study was to investigate 

different software defect prediction models. We have used generative machine learning models in defect prediction 
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process. As our experimental results  shows, these models achieve higher accuracy. Although for some datasets the 

obtained results are impressive, some other datasets, which do not have sufficient samples and suffer from data 

unbalancing engendered poor results. However, Logistic Regression presents the best generalization ability with 

accuracy numerical mode. In future, we will investigate how deep learning models can affect the results.. The 

findings of this study show that how Logistic Regression can be used to defect prediction. It is our hope that these 

results will help increase the confidence in these models. In the future, we have to spent on time and resources when 

dealing with error-prone modules. 
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