
International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6909

Software Defect Prediction Based on Machine learning

1. Dr. Molli Srinivasa Rao,
Professor,

Dadi Institute of Engineering and Technology,

Vizag, Andhra Pradesh, India

Email: drmollisrinivasarao@gmail.com

2. M Manju Bhargavi,

M.Tech (CSE)
Dadi Institute of Engineering and Technology,

Vizag, Andhra Pradesh, India

Abstract

There was rapid boom of software program development. Due to numerous reasons, the software program

comes with many defects. In latest years, defect prediction, one of the principal software program engineering

problems, has been inside the consciousness of researchers because it has a pivotal function in estimating software

program errors and defective modules. Researchers with the intention of enhancing prediction accuracy have

advanced many models for software program defect prediction. But, there are a number of crucial conditions and

theoretical issues a good way to reap higher consequences. In this paper, we are able to be discussing SVM

classifier, Naïve bayes classifier ,logistic regression, decision tree and KNN with cross validation is used to locate

the accuracy. The effects show that consistency in high accuracy prediction turned into done the use of this
strategies.

Keywords— defect prediction; SVM classifier; Naïve bayes; Logistic Regression ,Decision Tree ,KNN.

1 .INTRODUCTIONS

Software quality can be measured by means of fault proneness information. a number of the most up-to-

date strategies attempted to investigate that whether or not to be had metrics in requirement and code could be used

to pick out fault prone modules. It ought to be stated that, those metrics and requirement statistics have been

collected throughout software program development cycle and extensive efforts have been deployed to build extra

accurate defect prediction modules by way of those information to estimate the satisfactory of centered application

modules. On this regard, unique techniques were proposed to expect defective modules in latest years, like statistical
approaches, data mining and deep learning procedures. but, defect prediction modules could be applied in

extraordinary phases in the following lessons: the first magnificence that is in testing phase consist of the subsequent

models: seize-recapture models [1], neural network models [2], measure technique primarily based on scalable

approach based totally on supply code complexity [3]. Subsequent class, which changed into employed to expect

wide variety of defects inside the software improvement system, is earlier than the real developing segment of the

centered software. The following models are blanketed on this category: phase primarily based approach this is

recommended in [4], An Ada-primarily based defect prediction technique is proposed in [5], and to expect

defections at first degrees of programming, a model has been proposed with the aid of Smits [6].

The two primary issues, which frequently bring about defected facts, are excessive dimensionality and

imbalanced training. In [7], a single classifier technique is supplied by means of Kehan et al. That is based totally on

facts sampling and function choice to deal with the aforementioned problems. They don't forget 3 scenarios, such

that function selection is based totally on two distinctive varieties of information, i.e., original information or
sampled information. They concluded that the state of affairs that's characteristic choice have executed on sampled

statistics and have modeled on unique statistics have significantly better performance than the other situations.

Modules/lessons in software defect Prediction (SDP) can be categorized into : fault-susceptible and not

fault-susceptible. SDP models can be constructed using the fault records and the software program metrics obtained

from previous software releases or similar software projects [8,9]. After constructing the model, it can be

incorporated into present day initiatives and assist classify all the modules/instructions as being fault-prone or now

not fault-prone [10]. The usage of these consequences, the software practitioners can now make an informed

mailto:drmollisrinivasarao@gmail.com

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6910

decision to work on all of the fault prone regions in the course of the early ranges of development.

For instance, if only 30% of testing assets were assigned to a certain software program, having

understanding of all of the fault-susceptible regions will make sure that each one the available sources are allotted

toward the correction of the modules/instructions in these regions [11]. Thereby, resulting in a excessive first-rate

and maintainable that is of high quality and produced with the given time body and budget [12]. A great a part of

SDP studies interest is targeted in the detection of whether software components are defect inclined or now not by

means of relying on the usage of software metrics drawn from the code [13]. At the same time as specific machine

studying algorithms have been used in supporting with the type of software additives as being defect-inclined or

now not with the aid of trying to nice rules or patterns inside information, none of them has proved be correct on a

consistent basis. A number of these strategies used consist of combined algorithms, parametric models, machine
learning techniques and statistical strategies. But, before concluding on whether this hassle is largely unsolvable,

there may be need for the identity of the satisfactory prediction technique to help with predicting a trouble primarily

based on the context.

This examine will rely on open source software program repositories to research key software program

defect prediction models including SVM classifier, Naïve Bayes classifier, Decision tree, Logistic Regression ,

KNN. By means of giving clues approximately these models, and the way they react with unique datasets, we do

hope that consequences acquired on this have a look at will assist growth confidence in them. Key findings of this

study display that the usage of stacking more than one classifiers can be of use to defect prediction.

II. LITERATURE REVIEW
They four varieties of machine learning task which include reinforcement, semi-supervised, unsupervised

and supervised learning. Although supervised and un-supervised learning remain the most popular task group.

Supervised learning is machine learning method that involves the usage of labelled training data, which

houses various training examples to infer a characteristic. The training instance includes an input object and the

favored output price and consists of the regression and classification of supervised learning responsibilities [32]. The

regression category mission focuses on non-stop variety version constructing even as the class studying project

focuses on constructing predictive version that functions within a discreet range. Instance of supervised device

learning techniques include aid vector system, neural network, linear regression, Bayesian learning, instance

primarily based learning, rule learning and learning classification [33].

The speedy increase of studies in system studying has resulted in the creation of various learning

algorithms that can be used throughout distinct programs [34]. Additionally, the potential of machine learning

algorithms to clear up-real global troubles will often decide its remaining value making the duplicate and application

of algorithms in new tasks essential to the sphere’s progress. However, the contemporary research landscape

functions numerous guides concerning software defect prediction model improvement. These may be located into

categories based on and classification techniques.

Design [42] and code metrics [43] are used to evaluate the accuracy of fault prediction models which can

be to be had earlier than and after the device is carried out. Code metrics and layout metrics are to be had most
effective after the machine is applied and earlier than the coding has began [44]. Models are primarily based on the

data from one launch of a big telecommunication device evolved with the aid of Ericsson the use of linear

regression. Of their have a look at, prediction made after the device is 34% more correct than earlier than the

machine. The range of metrics to be had earlier than the implementation is 43% and after the implementation is 58%

[44] however the performance of the machine is identical whilst metrics are not used. Professionals use Statistical

techniques and machine getting to know techniques to anticipate the inability inclination of the code of their

software. Of their examine, execution of lines of code (LOC) metric is nicely and accuracy of loss of cohesion on

methods (LCOM) metric is remarkable but its end result pleasant is low .

Aleem et al [40], after suing various machine learning strategies to behavior a have a look at on 15 datasets

(KC3, KC1, CM1, AR6, and AR1 and many others) determined out that bagging, multilayer perceptron (MLP) and

support vector system (SVM) carried out high degrees of overall performance and accuracy.

Bibi et al. follow a device learning technique to the trouble of estimating the range of defects called

Regression via category (RvC) [41]. RvC to start with robotically discretizes the variety of defects into some of fault

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6911

classes, then learns a version that predicts the fault magnificence of a software gadget. eventually, RvC transforms

the class output of the model back right into a numeric prediction.

Challagulla et al. examine unique predictor models on four distinct actual- time software program defect

datasets [45]. Their effects display that a combination of 1R and example-based totally gaining knowledge of along

with the Consistency based Subset evaluation method gives a particularly better consistency in accuracy prediction

as compared to different methods. They also declare that length and complexity metrics are not enough for
appropriately predicting actual-time software program defects.

Ratzinger et al. examine the influence of evolution sports along with refactoring on software defects [46].

In a case look at of 5 open source tasks they used attributes of software program evolution to are expecting defects

in time intervals of six months. They use versioning and trouble tracking structures to extract 110 statistics mining

features, which are separated into refactoring and non-refactoring associated functions. Those features are used as

input into type algorithms that create prediction models for software defects.

An investigation performed by [48] relied on a unique benchmark framework in comparing and predicting

software defect. The activities concerned comparing and comparing distinctive getting to know schemes to the

selected one and the usage of it to build a predictor that has all of the historical records [47]. This predictor is now

equipped to predict any defect in any new data.

III. RELATED WORKS

In latest years, wide kind of machine learning techniques have been proposed and implemented to
extraordinary domain names by researchers. However, in defect prediction context, to the pleasant of our

understanding few works were performed which we are able to evaluate in this phase.

Y. Chen and et al [14] reviewed the preceding work in subject of defect management and software

prediction. They introduce a singular method for defect prediction by way of the use of data mining strategies and

claim that their proposed model is able to lead the developmental levels of a brand new software program. In the

beginning, defect database is generated that is made from all of the statistics about the defect facts within the

software life cycle. After that, through mining techniques, especially Bayesian network, the defect prediction

version is built for the going.

An stronger multilayer perceptron neural network is explored via [15], and also fault-proneness prediction
modeling is completed through comparative evaluation for software program systems and then tested by means of

NASA’s Metrics data program (MDP). Gabriela Czibula et al. present in [16] a singular classification model

regarding relational association rules mining.

Figuring out faulty modules is not always a clear-cut challenge. To reap excessive overall performance,

diverse issue have to be considered in defect prediction models. Ishani and Arora and et al. in [17] introduce a

number of them in element. Their studies display that those issues are caused by the following issues:

 Relationship between Attributes and fault.

 No benchmark to evaluate overall performance correctly.

 Problems with defect prediction in cross-mission.

 No to be had widespread framework.

 Economic boundaries of defect prediction in software program.

 Class imbalance trouble.

Besides the above techniques, association based type approach is taken into consideration on this context

by Baojun Ma and et al [33]. They use CBA2 algorithm and evaluate it with the opposite rule primarily based type

strategies. Their experimental effects indicates CBA2 acts higher than C4.five and RIPPER algorithms.

Commonly, defect prediction manner is designed through supervised machine learning (classification),

that's called within-project defect prediction (WPDP) due to the fact all processes are conducted ‘within’ a single

software program mission. Some preprocessing techniques together with characteristic selection and normalization

are widely implemented in these studies [18], [19], [20]. But, WPDP has some intrinsic boundaries since training

models without records of defect statistics generate the categorized dataset. Researchers have also proposed

strategies to improve cross project defect prediction (CPDP) [19]–[23], [25], [26] this is defect prediction for

unlabeled datasets [27], [28]. CPDP normally has low performance.

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6912

Overall performance. But, most CPDP strategies have a few limitations that have some giant consequences

on the performance as an instance; they need to use identical metrics if source data set and goal statistics set had

heterogeneous metrics. If you want to clear up this problem Jae chang Nam and Sunghun Kim [24] supplied a new

algorithm. They proposed heterogeneous defect prediction (HDP) technique for predicting defects across challenge

sets (whether or not heterogeneous metrics exist in dataset). Indeed, source project and destination project may be

exceptional from each other. We classified most crucial latest studies based on 3 classes as they're taken into

consideration in table 1. Six parameters are mentioned in details for techniques in table 1. In general, the following

consequences are located from table 1 (Taxonomy table) by means of scrutiny of the models:

 The studying strategies are deployed for pattern classifications in most techniques.

 The class imbalanced problem changed into now not taken in to account in most current studies and they
try to strong their strategies.

 A great range of methods did now not do not forget preprocessing step, at the same time as some of others

have complicated approach for doing it.

 This paper offers a manner to improve defect prediction via leveraging the strength of logistic

regression,SVM and KNN in machine learning models. The steps are discussed in detail after introducing

machine learning techniques .

Approach

PAPER

Method

(Mining,

Learning,

Optimization)

Methodology
Preprocessing step Class imbalance

problem

Supervised

Semi-

supervised

Datasets

The

Proposed

Method

-

Machine

Learning

Logistic

regression,SV

M,

Normalization

Not Considered

-

Log,v(g),ev(g),iv(G),n,v,i,d,l,

e,b,t,

WPDP

[17]

Minining &

Learning

OneR, J48, and

naïve Bayes

removing the

module

identifier
attribute

Not Considered

Supervised

KC3,CM1,KC4,MW1,PC1,

PC2,PC3,PC4

[18]

Minining &

Learning

Extended

transfer

component

analysis

+logistic regres

sion

min-max and z-

score

normalization

methods

Not Considered

Supervised

ReLink,AEEEM

[19]
Minining &

Learning

WC and CC-

data models
NN-filtering Not Considered Supervised

PC1,KC1,KC2,CM1,

KC3,

AR3,AR4,AR5
,MW1,MC2

CPDP

[20]

Learning
Transfer Naive

Bayes

NN-filtering

Not Considered

Supervised
kc3,Pc1,kc1,kc2, cm1,

ar3,ar4,ar5, mw1,mc2

[21]

Mining &
Learning

context-aware

rank
transformations

Clean Data
(Understand)

Not Considered

Semi-
supervised

Generate a dataset

[22]

Learning

ensemble

approaches

Minimizing

collinearity

Considered

Supervised

Bugzilla ,Columba

,Gimp

,Eclipse JDT ,Maven-

2

,Mozilla

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6913

TABLE 1. A taxonomy of the related works along with the proposed method

IV. MACHINE LEARNING TECHNIQUES

The proposed scheme is shown in the Fig.1.

 Fig.1. the general view of the proposed model

Following that, every step is discussed in detail. The scheme is designed based totally on our test, that are include

four steps as it is shown in Fig.1. in this we are going to use two algorithms on the way to conduct this research. The

first set of rules is SVM algorithm,we plot raw data as factors in an N-dimensional area(n= no of functions you have

got).The fee of every function is then tied to a particular coordinate, making it clean to categorise the data. The

second set of rules we use naïve bayes set of rules to assume that the presence of a selected characteristic in a

category is unrelated to the presence of every other function. When the getting to know manner is accomplished, it's
far first spiltted and educated to get tested to conduct classification. This algorithms pleasant suits for selection

boundary, speedy and quick classification can be completed with the aid of this algorithms.

A. Support vector machine

 Support Vector system (SVM) is introduced in COLT-ninety two through Boser, Guyon & Vapnik. it's far

theoretically a completely well motivated set of rules. Vapnik & Chervonenkis (1960s) evolved SVM from

Statistical mastering theory. In SVM, records is being differentiated into two units; training set and testing set. Each

file within the training set consists of one target fee or elegance call and carries some properties referred to as

watched variables. SVM discovers a direct dividing hyper- plane. The equation for partition is ax+by way of=c.

SVM is applied as a part of numerous fields. SVM is applied as a part of two fold association errands. SVMs are any

other promising non-direct, non-parametric order approach. SVM is utilized as part of the restorative diagnostics,

optical individual reputation, electric powered load anticipating and different several fields.[35]

Fig.2. SVM Scheme

HDP

[23]

Learning

canonical

correlation

analysis (CCA)

nearest neighbor

(NN)

z-score

normalization

Considered

Supervised

NASA,SOFTLAB,ReLink

AEEEM

[24]

Learning

Logistic

regression

Feature

selection (gain

ratio, chi-

square,

relief-F)

Considered

Supervised

AEEEM,ReLink,MORP

H

NASA,SOFTLAB

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6914

SVM may be of two types:

1.Linear SVM: Linear SVM is used for linearly separable statistics, which means if a dataset may be categorized

into two instructions by using using a single straight line, then such data is termed as linearly separable information,

and classifier is used known as as Linear SVM classifier.

2. Non-linear SVM: Non-Linear SVM is used for non-linearly separated statistics, which means if a dataset can't be

categorized by using a straight line, then such data is named as non-linear facts and classifier used is known as as
non linear SVM classifier.

B. Naïve Bayes algorithm

This classification algorithm that works with both multi-magnificence and binary (magnificence) classification
troubles and can be pretty simple to understand when described the use of specific or binary enter values [29]. Naïve

Bayes permits extension to actual fee attributes, which is likewise called the Gaussian Naïve Bayes. Working with

the ordinary distribution (Gaussian) is quite simple, all one has to do is find the training records to estimate the

standard deviation and mean.

Fig.3. NAÏVE BAYES Scheme

Naïve Bayes algorithm is a supervised getting to know set of rules, that is based totally on Bayes theorem and used

for fixing class problems. It's far specially used in textual content category that consists of a high-dimensional

education dataset. Naïve Bayes Classifier is one of the easy and handiest classification algorithms which allows in

constructing the quick machine learning models which could make quick predictions. It's far a probabilistic

classifier, because of this it predicts on the premise of the chance of an item. Some popular examples of Naïve

Bayes set of rules are unsolicited mail filtration,Sentimental analysis, and classifying articles[36].

C. Decision tree classification algorithm

A extreme trouble that most auto-encoders need to deal selection Tree is a Supervised getting to know technique that

may be used for both category and Regression problems, however mostly it is desired for fixing category problems.

It's far a tree-established classifier, wherein inner nodes constitute the capabilities of a dataset, branches represent

the selection policies and every leaf node represents the final results. In a decision tree, there are nodes, which are
the decision Node and Leaf Node. Selection nodes are used to make any choice and feature multiple branches,

whereas Leaf nodes are the output of these decisions and do no longer incorporate any in addition branches. The

selections or the check are completed on the idea of functions of the given dataset. It's far a graphical illustration for

buying all the possible answers to a trouble/decision primarily based on given situations. It's miles referred to as a

choice tree due to the fact, just like a tree, it begins with the foundation node, which expands on further branches

and constructs a tree-like shape. In an effort to build a tree, we use the CART set of rules, which stands for class and

Regression Tree set of rules. A decision tree sincerely asks a query, and based on the answer (sure/No), it further cut

up the tree into subtrees . Below diagram explains the general structure of a decision tree:[37]

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6915

Fig.4. Decision Tree Scheme

D. Logistic Regression

Logistic regression is one of the most popular Logistic regression is one of the most famous machine learning

algorithms, which comes below the Supervised machine learning method. It's far used for predicting the categorical
established variable the use of a given set of independent variables. Logistic regression predicts the output of a

specific established variable. Therefore the outcome should be a categorical or discrete fee. It is able to be both yes

or No, zero or 1, true or false, and so on. But in preference to giving the exact cost as 0 and 1, it gives the

probabilistic values which lie among 0 and 1. [38]

Fig.5. Logistic Regression Scheme

 Logistic Regression is a lot similar to the Linear Regression except that how they may be used. Linear Regression is

used for solving Regression problems, while Logistic regression is used for solving the classification troubles. In

Logistic regression, instead of fitting a regression line, we healthy an "S" formed logistic characteristic, which

predicts two maximum values (0 or 1).The curve from the logistic function suggests the likelihood of something

consisting of whether or not the cells are cancerous or not, a mouse is obese or not based on its weight, and many

others. Logistic Regression is a huge machine learning set of rules because it has the ability to provide chances and

classify new information the usage of continuous and discrete datasets. Logistic Regression may be used to

categorise the observations the use of exclusive kinds of records and may without problems determine the only

variables used for the category.

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6916

E. KNN Algorithm

k-Nearest Neighbour is one of the only system getting to know algorithms primarily based on Supervised gaining

knowledge of method. K-NN set of rules assumes the similarity between the new case/data and available cases and

put the brand new case into the category that is maximum just like the available categories. K-NN set of rules stores

all of the available facts and classifies a brand new facts factor primarily based at the similarity. This means when

new facts appears then it may be effortlessly categorized into a nicely suite category by means of using K- NN set of

rules. K-NN set of rules may be used for Regression as well as for class but in general it's miles used for the

category troubles. K-NN is a non-parametric set of rules, which means it does not make any assumption on

underlying records. It's also called a lazy learner algorithm as it does not analyze from the education set at once

alternatively it stores the dataset and on the time of type, it plays an action on the dataset.KNN algorithm on the
learning phase simply stores the dataset and while it receives new records, then it classifies that records into a class

that is tons just like the new facts.[39]

Fig 6: KNN Algorithm

V. METHODOLOGY

This section presents the methodological gear, steps and tactics utilized in reaching the observe goals.

 A. Data Preparation

The use of Machine-learning techniques is essential in attaining software program reusability, maintainability and
exceptional because it enables with finding the bas scent, ambiguity, fault and defect in software program. Carrying

out this requires software program default prediction techniques, which rely on statistical strategies to any software

defects [24]. But, software program detection can also be performed through machine learning strategies.

B. Datasets

A set of NASA information were accumulated and research is being made for this reason. In current years, those
datasets have drawn a notable quantity of attentions from researchers. The information of the datasets are proven in

the table. Pre-processing allows shape the information into a shape that the category engine can use [30,31]. Key

benefits of pre-processing consist of normalizing numeric facts and helping fill in missing information.

The experiments depended on datasets drawn from the PROMISE facts repository amassed from actual NASA

software tasks and diverse software modules. The benchmarking involved the use of public area datasets. This

benchmarking manner allows other researchers evaluate their studies. A number of the code metrics used inside the

datasets include McCabe’s cyclomatic complexity, code length and Halstead’s complexity among others. The

outline of Datasets is summarized inside the table 1. The goal variables inside the NASA MDP facts units are binary

in nature, 1: real, 0: false. Table 2 suggests the overall performance matrices that are used in this have a look at.

Python programming and Scikit-analyze (machine learning framework) is used in data examination.

Variables Description Metrics

Type

Loc Line count of Code McCabe

v(g) Cyclomatic Complexity McCabe

ev(g) Essential Complexity McCabe

iv(g) Design Complexity Halstead

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6917

Table 1: NASA MDP Dataset

C. Preprocessing Step (normalization)

On account that each sample carries unique values which could vary substantially, function scaling, which is
considered one of popular techniques in normalization, is performed to normalize capabilities (impartial variables).

To achieve this aim, standardization technique is selected and used for this segment. Standardization is broadly used

for normalization in lots of system getting to know algorithms. Feature normalization is performed according to the

formula below,

Where xi
 defines the ith data dimension, µ is average, and defines standard deviation of that dimension.

Datatypes are printed,shape of the data is taken, no missing values and outliers are removed.After removing we

got Highest mean =109.635 and lowest value =-68.89. The below table gives the result of dataset (log) after

removing outliers.

Count 168

Mean 6.75

Std 0.807

Min 6.0

25% 6.0

50% 7.0

max 8.0

N Total operators and

Operands

Halstead

V Volume Halstead

L Program Length Halstead

D Difficulty Halstead

I Intelligence Halstead

E Effort Halstead

B Number of Bugs Halstead

T Time estimator Halstead

lOCode Line Count Halstead

lOComment Line count of Comments Halstead

lOBlank Count of Blank Lines Halstead

lOCodeAndCommen

t

Lines of Comment and

Code

N/A

Uniq_Op Unique Operators Halstead

Uniq_Opnd Unique Operands Halstead

Total_Op Total Operators Halstead

Total_Opnd Total Operands Halstead

branchCount Flow Graph’s Branch

Count

Halstead

Problems Reported Defects N/A

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6918

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6919

*The above graphs represents distribution plots .

D. Classification

Solving the translation problem allowed the creation of numerous classification algorithms, which can be

customized in line to flows to defect, fragments or machining source code tokens. Each classifier comes with different

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6920

strength and weaknesses aimed to fit specific needs. Finally, the performance of the mentioned algorithms is

measured based on the performance metrics in Table 2.

Table 2: Performance Matrices

Performance

Matrices

Formula

Accuracy

F1

MAE ⃓True values-Predicted values⃓

E. K-Fold Cross Validation

After normalization step, a 10-fold cross-validation strategy is applied to compute the parameters of the test set.

Each dataset is randomly partitioned into K subsets, each of which is equal to others in terms of its size and one of

which is considered as test data every time while the other k-1 subsets are considered as training data. This action

should be reiterated ten times for running same algorithm on data. Finally, the mean of these k runs is computed.

VI. RESULTS

The results of the different ML techniques for defect prediction using various datasets are shown in Table 3, 4,5,6,7

and 8. The training was performed based on 10-fold cross validation.

Table 3: Performance of Supervised Learning Algorithms

Datasets Svm Naïve

Bayes

Logistic

regression

Decision tree

CM1 89.1 84.4 89.1 85.4

KC1 81.6 78.4 79.1 76.6

KC2 80.89 81.9 81.2 81.5

KC3 73.1 78.89 75.59 71.3

KC4 80.2 78.8 81.19 78.6

MC1 80.4 60.3 78.78 62.5

MC2 85.9 84.9 87.75 84.4

PC1 96.5 97.18 70.82 97.0

PC2 62.61 60.31 97.63 85.8

PC3 96.54 97.18 70.82 95.4

PC4 89.71 60.31 97.63 79.9

PC5 96.2 97.18 92.1 97.7

JM1 80.77 60.31 96.8 79.9

MW1 72.9 97.1 84.42 79.9

Mean 84.6 82.6 86 82.5

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6921

Table 4: Performance of classifiers with cross validation

Datasets Svm Naïve Bayes KNN

CM1 91.3 83.43 82.1

KC1 71.8 74.6 85.9

KC2 80.86 80.54 96.5

KC3 73.8 70.3 62.61

KC4 80.2 75.6 96.54

MC1 72.4 61.5 89.71

MC2 90.73 82.48 96.2

PC1 93.5 94.18 96.5

PC2 75 57.31 62.61

PC3 91 96.18 96.54

PC4 89.32 52.31 89.71

PC5 84.9 92.18 96.2

JM1 90.15 58.31 80.77

MW1 94.07 95.18 72.9

Mean 85.6 81.6 85.87

Table 5: F-measure Performance of Supervised Learning Algorithms

Datasets Svm Naïve

Bayes

Logistic

regression

Decision tree

CM1 86.1 81.4 85.1 83.43

KC1 78.6 74.4 78.1 74.6

KC2 76.89 77.9 78.2 80.54

KC3 71.1 75.89 71.59 70.3

KC4 74.2 74.8 79.19 75.6

MC1 78.4 59.3 76.78 61.5

MC2 81.9 83.9 84.75 82.48

PC1 88.5 94.18 68.82 96.02

PC2 66.61 57.31 94.63 83.89

PC3 89.54 96.18 67.82 92.42

PC4 85.71 52.31 95.63 78.9

PC5 92.2 92.18 89.1 96.77

JM1 77.77 58.31 95.8 78.9

MW1 69.9 95.18 82.42 77.94

Mean 80.6 78.6 83.87 77.51

Table 6: F-measure Performance of classifiers with cross validation.

Datasets Svm Naïve Bayes KNN

CM1 80.2 75.31 76.78

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6922

KC1 80.4 96.18 84.75

KC2 85.9 81.4 68.82

KC3 96.5 74.4 94.63

KC4 62.61 77.9 67.82

MC1 96.54 75.89 95.63

MC2 89.71 74.8 89.1

PC1 96.2 59.3 95.8

PC2 84.9 83.9 80.54

PC3 90.15 94.18 70.3

PC4 94.07 57.31 75.6

PC5 78.1 96.18 61.5

JM1 76.02 52.31 80.14

MW1 80.01 92.18 79.12

Mean 83.5 78.16 83.87

Table 7: MAE Performance of Supervised Learning Algorithms

Datasets Svm Naïve

Bayes

Logistic

regression

Decision tree

CM1 0.08 0.11 0.08 0.07

KC1 0.12 0.27 0.12 0.25

KC2 0.19 0.23 0.15 0.43

KC3 0.20 0.29 0.20 0.42

KC4 0.18 0.24 0.19 0.31

MC1 0.17 0.38 0.18 0.54

MC2 0.14 0.35 0.14 0.32

PC1 0.03 0.07 0.03 0.02

PC2 0.27 0.33 0.10 0.32

PC3 0.07 0.07 0.02 0.37

PC4 0.11 0.22 0.53 0.21

PC5 0.09 0.07 0.49 0.40

JM1 0.80 0.22 0.04 0.51

MW1 0.14 0.47 0.25 0.54

Mean 0.18 0.22 0.17 0.28

Table 8: MAE Performance of Ensemble Learning Algorithms

Datasets Svm Naïve Bayes KNN

CM1 0.09 0.07 0.49

KC1 0.80 0.33 0.04

KC2 0.14 0.07 0.25

KC3 0.20 0.22 0.15

KC4 0.04 0.58 0.20

MC1 0.12 0.87 0.19

MC2 0.10 0.35 0.18

PC1 0.14 0.48 0.14

PC2 0.04 0.15 0.03

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6923

PC3 0.12 0.02 0.10

PC4 0.14 0.09 0.02

PC5 0.25 0.31 0.15

JM1 0.52 0.23 0.14

MW1 0.19 0.12 0.18

Mean 0.17 0.24 0.17

graph of KNN for each K's value how testing score change

Figure 1: Accuracy Chart of Different algorithms

74

76

78

80

82

84

86

SVM NAÏVE BAYES DECISION
TREE

LOGISTIC
REGRESSION

KNN WITH
CROSS

VALIDATION

SVM WITH
CROSS

VALIDATION

NAÏVE BAYES
WITH CROSS
VALIDATION

Series1

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6924

Figure 2: F-Measure of Different Algorithms

Figure 3: MAE Performance of Different Algorithms

Based on MAE score chart (Figure 3), all classifiers have lowest MAE score where Decision tree is on top. KNN

with cross validation, logistic and SVM with cross validation acquired the lowest score among all the learning

algorithms. Performance of both algorithms are slightly different.

Overall, Logistic regression performed well in all 3 performance measures and out performed all other algorithms.

Algorithms with cross validation performed relatively well except naïve bayes. In supervised learning, SVM and

logistic regression showed promising performance. In cross validation, SVM and KNN both performed well in all.

Decision tree and Naïve Bayes performance is low compared to other classifiers. The proposed method has given

the accuracy of 0.8515.

VII. CONCLUSION

Recent years have seen a growth in the development of software-based systems even though the quality of the

system has to be best before delivery to the end-users. Software quality can be enhanced through several quality
metrics such as ISO standards, CMM, and software testing. The need for software testing grows with each day, and

its efficiency can be improved by using software defect prediction. The objective of this study was to investigate

different software defect prediction models. We have used generative machine learning models in defect prediction

79
80
81
82
83
84
85
86
87

SVM NAÏVE
BAYES

DECISION
TREE

LOGISTIC
REGRESSION

KNN WITH
CROSS

VALIDATION

SVM WITH
CROSS

VALIDATION

NAÏVE
BAYES WITH

CROSS
VALIDATION

Series1

0

0.05

0.1

0.15

0.2

0.25

0.3

SVM NAÏVE BAYES DECISION
TREE

LOGISTIC
REGRESSION

KNN WITH
CROSS

VALIDATION

SVM WITH
CROSS

VALIDATION

NAÏVE BAYES
WITH CROSS
VALIDATION

Series1

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6925

process. As our experimental results shows, these models achieve higher accuracy. Although for some datasets the

obtained results are impressive, some other datasets, which do not have sufficient samples and suffer from data

unbalancing engendered poor results. However, Logistic Regression presents the best generalization ability with

accuracy numerical mode. In future, we will investigate how deep learning models can affect the results.. The

findings of this study show that how Logistic Regression can be used to defect prediction. It is our hope that these

results will help increase the confidence in these models. In the future, we have to spent on time and resources when

dealing with error-prone modules.

REFERENCES

1. L. C. Briand, K. El Emam, B. G. Freimut, and O. Laitenberger, “A comprehensive evaluation of capture-

recapture models for estimating software defect content,” IEEE Transactions on Software Engineering, vol. 26,

no. 6, pp. 518–540, 2000.
2. S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking classification models for software defect

prediction: A proposed framework and novel findings,” IEEE Transactions on Software Engineering, vol. 34,

no. 4, pp. 485–496, 2008.

3. Y. K. Malaiya and J. Denton, “Estimating the number of residual defects [in software],” in High-assurance

systems engineering symposium, 1998. Proceedings. Third IEEE international, 1998, pp. 98–105.

4. J. E. Gaffney and C. F. Davis, “An approach to estimating software errors and availability,” in Eleventh

Minnowbrook Workshop on Software Reliability, 1988.

5. W. W. Agresti and W. M. Evanco, “Projecting software defects from analyzing Ada designs,” IEEE

Transactions on Software Engineering, vol. 18, no. 11, pp. 988–997, 1992.

6. H. Cao, Z. Qin, and T. Feng, “A Novel PCA-BP Fuzzy Neural Network Model for Software Defect Prediction,”

Advanced Science Letters, vol. 9, no. 1, pp. 423–428, 2012.

7. K. Gao and T. M. Khoshgoftaar, “Software Defect Prediction for High-Dimensional and Class-Imbalanced
Data.,” in SEKE, 2011, pp. 89–94.

8. Erturk, and E.A. Sezer. A comparison of some soft computing methods for software fault prediction.

Expert systems with applications, 42(4), 1872-1879, 2015. https://doi.org/10.1016/j.eswa.2014.10.025.

9. M.K. Albzeirat, M.I. Hussain, R. Ahmad, F.M. Al- Saraireh, A. Salahuddin, and N. Bin-Abdun.

Applications of Nano-Fluid in Nuclear Power Plants within a Future Vision. International Journal of

Applied Engineering Research, 13(7), 5528-5533, 2018 .

10. S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking classification models for software defect

prediction: A proposed framework and novel findings. IEEE Transactions on Software Engineering, 34(4),

485- 496, 2008.

11. M. Singh, and D.S. Salaria. Software defect prediction tool based on neural network. International Journal

of Computer Applications, 70(22), 2013.
12. X. Tan, X. Peng, S. Pan, and W. Zhao. Assessing software quality by program clustering and defect

prediction. 18th working conference on Reverse Engineering, pp. 244-248, 2011.

13. N. Li, M. Shepperd, and Y. Guo. A systematic review of unsupervised learning techniques for software

defect prediction, Information and Software Technology, Vol. 122, 106287, 2020

https://doi.org/10.1016/j.infsof.2020.106287

14. Y. Chen, X. Shen, P. Du, and B. Ge, “Research on software defect prediction based on data mining,” in

Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on, 2010, vol. 1, pp.

563–567.

15. M. Gayathri and A. Sudha, “Software defect prediction system using multilayer perceptron neural network with

data mining,” International Journal of Recent Technology and Engineering (IJRTE), vol. 3, no. 2, pp. 54–59,

2014.

16. Czibula, Z. Marian, and I. G. Czibula, “Software defect prediction using relational association rule mining,”
Information Sciences, vol. 264, pp. 260–278, 2014.

17. Arora, V. Tetarwal, and A. Saha, “Open issues in software defect prediction,” Procedia Computer Science, vol.

46, pp. 906–912, 2015.

18. T. Menzies, J. Greenwald, and A. Frank, “Data mining static code attributes to learn defect predictors,” IEEE

transactions on software engineering, vol. 33, no. 1, 2007.

19. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in Proceedings of the 2013 International Conference on

Software Engineering, 2013, pp. 382–391.

20. B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative value of cross-company and within-

https://doi.org/10.1016/j.eswa.2014.10.025
https://doi.org/10.1016/j.infsof.2020.106287

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6926

company data for defect prediction,” Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, 2009.

21. Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for cross-company software defect prediction,”

Information and Software Technology, vol. 54, no. 3, pp. 248–256, 2012.

22. Zhang, A. Mockus, I. Keivanloo, and Y. Zou, “Towards building a universal defect prediction model,” in

Proceedings of the 11th Working Conference on Mining Software Repositories, 2014, pp. 182–191.

23. T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi, “An empirical study of just-in-time

defect prediction using cross-project models,” in Proceedings of the 11th Working Conference on Mining

Software Repositories, 2014, pp. 172–181.

24. Nam and S. Kim, “Heterogeneous defect prediction,” in Proceedings of the 2015 10th joint meeting on

foundations of software engineering, 2015, pp. 508–519.
25. S. Watanabe, H. Kaiya, and K. Kaijiri, “Adapting a fault prediction model to allow inter languagereuse,” in

Proceedings of the 4th international workshop on Predictor models in software engineering, 2008, pp. 19–24.

26. Canfora, A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella, “Multi-objective cross-project

defect prediction,” in Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth International

Conference on, 2013, pp. 252–261.

27. C. Catal, U. Sevim, and B. Diri, “Clustering and metrics thresholds based software fault prediction of

unlabeled program modules,” in Information Technology: New Generations, 2009. ITNG’09. Sixth

International Conference on, 2009, pp. 199–204.

28. S. Zhong, T. M. Khoshgoftaar, and N. Seliya, “Unsupervised Learning for Expert-Based Software Quality

Estimation.,” in HASE, 2004, pp. 149–155.

29. M.S. Naidu, and N. Geethanjali. Classification of defects in software using decision tree algorithm.

International Journal of Engineering Science and Technology, 5(6), 1332, 2013.
30. W.H.W. Ishak, K.R.K. Mahamud, and N.M. Norwawi. Modelling of Human Expert Decision Making in

Reservoir Operation, Journal Teknologi, 77(22), 1-5, 2015.

31. W.H.W. Ishak, K.R.K. Mahamud, and N.M. Norwawi. Intelligent Decision Support Model Based on Neural

Network to Support Reservoir Water Release Decision, In J.M. Zain et al. (Eds.): ICSECS 2011, Part I,

Communications in Computer and Information Science (CCIS) 179, pp. 365-379, 2011.

https://doi.org/10.1007/978-3-642-22170-5_32

32. M.A. Hall. Correlation-based feature selection of discrete and numeric class machine learning,

Proceedings of the Seventeenth International Conference on Machine Learning, pp. 359-366, 2000

33. S. Karim, H. L. H. S. Warnars, F.L. Gaol, E. Abdurachman, and B. Soewito. Software metrics for fault

prediction using machine learning approaches: A literature review with PROMISE repository dataset.

IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), pp. 19-23,
2017.

34. Kaur, and R. Malhotra, Application of Random Forest in Predicting Fault-Prone Classes, International

Conference on Advanced Computer Theory and Engineering, pp. 37-43, 2008, doi:

10.1109/ICACTE.2008.204.

35. https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm.

36. https://www.javatpoint.com/machine-learning-naive-bayes-classifier.

37. https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm

38. https://www.javatpoint.com/logistic-regression-in-machine-learning

39. https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning.

40. S. Aleem, L.F. Capretz, and F. Ahmed. Benchmarking machine learning technologies for software defect

detection. International Journal of Software Engineering & Applications (IJSEA), 6(3), pp. 11-23, 2015.

41. Bibi, S., Tsoumakas, G., Stamelos, I., &Vlahavas, I. P. (2006, March). Software Defect Prediction Using

Regression via Classification.In AICCSA (pp. 330-336.

42. El Emam, K., Melo, W., & Machado, J. C. (2001).The prediction of faulty classes using object-oriented design
metrics. Journal of Systems and Software, 56(1), 63-75.

43. Zhao, M., Wohlin, C., Ohlsson, N., &Xie, M. (1998). A comparison between software design and code metrics

for the prediction of software fault content. Information and Software Technology, 40(14), 801-809.

44. Tomaszewski, P., Lundberg, L., &Grahn, H. (2005). The accuracy of early fault prediction in modified code.In

Proceedings of the Fifth Conference on Software Engineering Research and Practice in Sweden (SERPS) (pp.

57-63).

45. Challagulla, V. U. B., Bastani, F. B., Yen, I. L., & Paul, R. A. (2008). Empirical assessment of machine learning

based software defect prediction techniques. International Journal on Artificial Intelligence Tools, 17(02), 389-

https://doi.org/10.1007/978-3-642-22170-5_32
https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm
https://www.javatpoint.com/machine-learning-naive-bayes-classifier
https://www.javatpoint.com/logistic-regression-in-machine-learning
https://www.javatpoint.com/k-nearest-neighbor-algorithm-for-machine-learning

International Journal of Early Childhood Special Education (INT-JECSE)

DOI:10.9756/INTJECSE/V14I5.866 ISSN: 1308-5581 Vol 14, Issue 05 2022

6927

400.

46. Ratzinger, J., Sigmund, T., & Gall, H. C. (2008, May). On the relation of refactorings and software defect

prediction. In Proceedings of the 2008 international working conference on Mining software repositories (pp.

35-38). ACM.

47. J. Tian, and M.V. Zelkowitz. Complexity measure evaluation and selection, IEEE Transactions on
Software Engineering, 21(8), 641-650, 1995. https://doi.org/10.1109/32.403788.

48. M. Shepperd, D. Bowes, and T. Hall. Researcher bias: The use of machine learning in software defect

prediction. IEEE Transactions on Software Engineering, 40(6), 603-616, 2014.

