
IJSART - Volume 3 Issue 12 – DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 940 www.ijsart.com

Shaping of Data For Analysis Using Manipulation
Functions DCAST() And MELT() In R

Ramaraju.S.V.S.V.Palla

1, 2 Dept of CSE
1, 2 DIET Engineering College, Visakhapatnam

Abstract- In extracting the useful results from the huge date
we need to perform the data analysis in which the organizing
of data in need to be structured. We need to prepare the data
to be used by the various data science projects without
spending time on examining the data. So in this paper I
reviewed the two manipulation functions DCAST() and
MELT() for shaping the data into a form which is appropriate
for analysis. The manipulation function DCAST() is capable of
handling large data, guessing of result , filling the values with
missing cells, provides informative messages through the
console in more efficient manner with respective to the
memory utilization. The function MELT() is capable of
handling variable positions, or name, used to store measured
variable names, NA values are converted form explicit missing
to implicit missing. We also detect the resulting issues, and
address them using analytical programming language R

Keywords- data, manip, dcast, melt, statistical, visualization,
shaping.

I. INTRODUCTION

 Cleaning data and preparing data is an important
characteristic for the time and effort which is normally spent
in a data science project. It is better if we get into the
modeling step directly without spending the time at the data
set when we have a lot of data. But as we know that no data
set is perfect; we may have incorrect data, we may have
misinterpreted data, we may have missing data, among some
of the data fields may be inconsistent and some data fields
may be dirty. So, if we don’t spend time on examining the
data before to start the model, we may find our self redoing
our work repeatedly as we determines bad data variables or
fields which required to be transformed before modeling. In
the worst case, we will build a model that generates incorrect
predictions.

Therefore by handling such kind of data issues

before, we can save our self some unnecessary redoing of
same work, and we can save lot of time. In this paper, we’ll
clearly show the existence or truth of some of the things that
can go wrong with data, and examine different approaches or
methods to address those issues using the statistical language

R before going on to analysis. For quick numerical libraries,
we will use the Microsoft R Open distribution

Several issues crop up again and again when
preparing data for analysis in R:

 Loading of data from databases, spreadsheets, or

other formats into R
 Shaping data into a form which is appropriate for

analysis
 Checking variable types
 Managing bad values:
 Dealing with missing values (NA)
 Anticipating future novel categorical values
 Re-encoding categorical values with too many

levels

Among the several issues we focus on the shaping
data into a form which is appropriate for analysis by using the
data manipulation functions.

Analysts tend to follow 4 fundamental processes to turn data
into understanding, knowledge & insight:

1. Data manipulation
2. Data visualization
3. Statistical analysis/modeling
4. Deployment of results

1.1 Data Manipulation :It is often said that 80% of data
analysis is spent on the process of cleaning and preparing the
data. Well structured data serves two purposes:

1. Makes data suitable for software processing whether
that be mathematical functions, visualization, etc.

2. Reveals information and insights

II. LOADING DATA

There are a various packages and functions in R to load data
into it. Here, we represent a few of our preferred packages

IJSART - Volume 3 Issue 12 – DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 941 www.ijsart.com

and functions for loading data from the most common data
sources.

III. SHAPING DATA

The “shape” that is most efficient for storing or
recording data information is not always the best shape for
analyzing the data. For example, log data generally comes in a
long and skinny format where information about a single
entity (for example, a single customer or a single machine) is
scattered across many rows.

For analysis, we generally prefer data in a wide
format, where all facts about a single entity are stored in a
single row. As shown below

This wide format is so central to R that R calls rows

as observations and columns as variables.

R provides several functions for converting data from
skinny to wide formats, and vice versa.

 To convert from skinny to wide data, use dcast().
 To convert in the opposite direction, use melt().
 More advanced users may wish to move on to the

dplyr and tidyr ecosystems, though this involves
learning additional notation.

3.1 Dcast()

Fast Dcast For Data.Table, dcast.data.table is a much
faster version of reshape2::dcast, but for data.tables. More
importantly, it's capable of handling very large data quite
efficiently in terms of memory usage in comparison
to reshape2::dcast. From 1.9.6, dcast is implemented as an S3
generic in data.table. To melt or cast data.tables, it is not
necessary to load reshape2 anymore. If you have
load reshape2, do so before loading data.table to prevent
unwanted masking.

NEW: dcast.data.table can now cast
multiple value.var columns and also accepts multiple
functions to fun.aggregate. See Examples for more.
Usage

S3 method for data.table dcast (data, formula,
fun.aggregate = NULL, sep = "_", ..., margins = NULL,
subset = NULL, fill = NULL, drop = TRUE,
value.var = guess(data), verbose = getOption(
"datatable.verbose"))

Arguments

IJSART - Volume 3 Issue 12 – DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 942 www.ijsart.com

Details

The cast formula takes the form LHS ~ RHS,
ex: var1 + var2 ~ var3. The order of entries in the formula is
essential. There are two special variables: . andrepresents
no variable; ... represents all variables not otherwise
mentioned in formula; dcast also allows value.var columns of
type list.

When variable combinations in formula doesn't
identify a unique value in a cell, fun.aggregate will have to be
specified, which defaults to length if unspecified. The
aggregating function should take a vector as input and return a
single value (or a list of length one) as output. In cases
where value.var is a list, the function should be able to handle
a list input and provide a single value or list of length one as
output.

If the formula's LHS contains the same column more
than once, ex: dcast(DT, x+x~ y), then the answer will have
duplicate names. In those cases, the duplicate names are
renamed using make.unique so that key can be set without
issues.

Names for columns that are being cast are generated
in same order (separated by underscore, _) from the (unique)
values in each column mentioned in the formula RHS.
From v1.9.4, dcast tries to preserve attributes whereever
possible.

NEW: From v1.9.6, it is possible to cast
multiple value.var columns and also cast by providing
multiple fun.aggregate functions.

Multiple fun.aggregate functions should be provided
as a list, for e.g., list(mean, sum, function(x) paste(x,
collapse=""). value.var can be either a character vector or list
of length=1, or a list of length equal to length(fun.aggregate).
When value.var is a character vector or a list of length 1, each
function mentioned under fun.aggregate is applied to every
column specified under value.var column. When value.var is a
list of length equal to length(fun.aggregate) each element
of fun.aggregate is appled to each element
of value.var column.
Value

A keyed data.table that has been cast. The key

columns are equal to the variables in the formula LHS in the
same order.

Examples

NOT RUN {
require(data.table)
names(ChickWeight) <- tolower(names(ChickWeight))
DT <- melt(as.data.table(ChickWeight), id=2:4) # calls
melt.data.table

dcast is a S3 method in data.table from v1.9.6
dcast(DT, time ~ variable, fun=mean)
dcast(DT, diet ~ variable, fun=mean)
dcast(DT, diet+chick ~ time, drop=FALSE)
dcast(DT, diet+chick ~ time, drop=FALSE, fill=0)

using subset
dcast(DT, chick ~ time, fun=mean, subset=.(time < 10 &
chick < 20))

drop argument, #1512
DT <- data.table(v1 = c(1.1, 1.1, 1.1, 2.2, 2.2, 2.2),

IJSART - Volume 3 Issue 12 – DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 943 www.ijsart.com

 v2 = factor(c(1L, 1L, 1L, 3L, 3L, 3L), levels=1:3),
 v3 = factor(c(2L, 3L, 5L, 1L, 2L, 6L), levels=1:6),
 v4 = c(3L, 2L, 2L, 5L, 4L, 3L))

drop=TRUE
dcast(DT, v1 + v2 ~ v3) # default is
drop=TRUE
dcast(DT, v1 + v2 ~ v3, drop=FALSE) # all missing
combinations of both LHS and RHS
dcast(DT, v1 + v2 ~ v3, drop=c(FALSE, TRUE)) # all
missing combinations of only LHS
dcast(DT, v1 + v2 ~ v3, drop=c(TRUE, FALSE)) # all
missing combinations of only RHS

using . and ...
DT <- data.table(v1 = rep(1:2, each = 6),
 v2 = rep(rep(1:3, 2), each = 2),
 v3 = rep(1:2, 6),
 v4 = rnorm(6))
dcast(DT, ... ~ v3, value.var = "v4") #same as v1 + v2 ~ v3,
value.var = "v4"
dcast(DT, v1 + v2 + v3 ~ ., value.var = "v4")

for each combination of (v1, v2), add up all values of v4
dcast(DT, v1 + v2 ~ ., value.var = "v4", fun.aggregate =
sum)

}

NOT RUN {

benchmark against reshape2's dcast, minimum of 3 runs
set.seed(45)
DT <- data.table(aa=sample(1e4, 1e6, TRUE),
 bb=sample(1e3, 1e6, TRUE),
 cc = sample(letters, 1e6, TRUE), dd=runif(1e6))
system.time(dcast(DT, aa ~ cc, fun=sum)) # 0.12 seconds
system.time(dcast(DT, bb ~ cc, fun=mean)) # 0.04 seconds
reshape2::dcast takes 31 seconds
system.time(dcast(DT, aa + bb ~ cc, fun=sum)) # 1.2
seconds
}

NOT RUN {

NEW FEATURE - multiple value.var and multiple
fun.aggregate
dt = data.table(x=sample(5,20,TRUE),
y=sample(2,20,TRUE),
 z=sample(letters[1:2], 20,TRUE), d1 = runif(20),
d2=1L)

multiple value.var
dcast(dt, x + y ~ z, fun=sum, value.var=c("d1","d2"))

multiple fun.aggregate
dcast(dt, x + y ~ z, fun=list(sum, mean), value.var="d1")

multiple fun.agg and value.var (all combinations)
dcast(dt, x + y ~ z, fun=list(sum, mean), value.var=c("d1",
"d2"))

multiple fun.agg and value.var (one-to-one)
dcast(dt, x + y ~ z, fun=list(sum, mean),
value.var=list("d1", "d2"))
}

Melt()

Melt A Data Frame Into Form Suitable For Easy
Casting. You need to tell melt which of your variables are id
variables, and which are measured variables. If you only
supply one of id.vars and measure.vars, melt will assume the
remainder of the variables in the data set belong to the other. If
you supply neither, melt will assume factor and character
variables are id variables, and all others are measured.

Usage

"melt"(data, id.vars, measure.vars,
variable.name = "variable", ..., na.rm = FALSE,
value.name = "value", factorsAsStrings = TRUE)

Arguments

Script.R

IJSART - Volume 3 Issue 12 – DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 944 www.ijsart.com

1. names(airquality) <- tolower(names(airquality))
2. melt(airquality, id=c("month", "day"))
3. names(ChickWeight)<- tolower (names

(ChickWeight))
4. melt(ChickWeight, id=2:4)

IV. CONCLUSION

In this, we have discussed at a common pain points

that arise while preparing our data for the purpose analysis.
We also shown how to detect or predict these issues, and how
to address them using R. Some of these tasks can be instantly
automated, but some will be more domain specific and those
issues must be handled on a case-by-case basis

REFERENCES

Papers:

[1] More over ANOVA ralitza guerguieva
[2] Preparing data for analysis using R Nina Zumel, Win-

Vector LLC March 2016

Books:

[3] Applied spatial data analysis withR RS Bivand, V

Gomex-Rubio
[4] Efficient R Programming Colin Gillespie

