Reliability And Probability of Failure on Berthing Structures For Handling Bulk Cargo

Mrs. M. Kedhareswari¹, Ms. Anusuri Uma Maheswari²

^{1, 2}Assistant Professor, Dept of Civil Engineering
 ¹Dadi Institute of Engineering & Technology
 ²Chaitanya Engineering College, Kommadi, A.P.

Abstract- Berthing structure is a general term used to describe a marine structure for the mooring of vessels, for loading and unloading cargo, for embarking and disembarking passengers. Damage to port/harbor structure was primarily due to Stack and Crane load. Berthing structure mainly consists of Deck slab and Substructure. In this project, considered the entire superstructure is situated on Substructure consists of vertical piles, racker piles & Diaphragm wall to withstand loading conditions i.e., BGML, Crane load, Stack load, Concentrated load & IRC 70R loadings. In addition to these loads it can also resists mooring forces. The literature on the adequacy of the STAAD. Pro modeling of substructure to analyze their behavior under varying the Stack, Crane & Mooring forces is limited. . This project describes the effect of Stack, Crane and Mooring forces on bending moment of "T" Shaped Diaphragm wall and the axial forces of vertical & racker piles.

Keywords- Berthing Load, Current Load, Earth Pressure, Hydrostatic Pressure, Mooring Load, Wind Load

I. INTRODUCTION

India has one of the largest merchant shipping fleets among developing countries and is ranked 16th in the world in terms of gross tonnage. Over the years, cargo handling capacity of Major Ports has steadily increased. Due to this, many new ports are constructed over the past few years.

Generally, the transportation costs can be reduced by using larger vessels with, among other things, a larger draft; new ports will be constructed in more environmentally challenging conditions, so the loads working on the marine constructions and berthed vessels will be higher.

The currently applied approach for structural design has been used for decades but is based on vessel types from around 1980. It is therefore worthwhile to have a closer look at this approach for marine construction designs. When a vessel approaches a jetty, it is important to berth the vessel as gently as possible. Berthing structure is a general term used to describe a marine structure for the mooring of vessels, for loading and unloading cargo, for embarking and disembarking passengers. In U.S.A. a berthing structure is referred to as a pier, and wharf, and in European terminology, a jetty, and quay.

Berthing structures vary widely from port to port. The number of berths will depend upon the number of ships to use the port and the time it will take to discharge and take on cargo or passengers. The selection of the type of berth and the material used for its construction will depend upon a number of factors, such as: Availability of materials, Economy of construction, Size and weight of ships using the port, Method of construction.

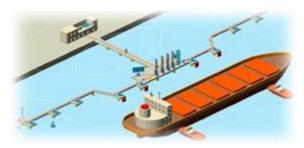


Fig 1: Open Type of Berthing Structure

II. OBJECTIVE OF THE STUDY

The objectives of the present study are as follows:

- The main objective of this paper is to study the effect of Crane, Stack & mooring forces on bending moment of "T" Shaped Diaphragm wall.
- 2) And also studied the effect of Crane, Stack & mooring forces on axial force of vertical & racker piles.

III. METHODOLOGY

Basic model specifications of Substructure

The entire berth of 255 metres length is divided into 5 units each 51 metres long. Each unit consists of 17 Nos. "T" shaped diaphragm wall panels. The diaphragm wall is connected at the top through a cellular deck 2.8 m deep to a series of vertical piles (850 mm dia) and raker piles (700 mm dia). All the substructure elements are socketed in hard rock. *Material Properties*

- (a) The material used for analysis Reinforced concrete with M-30 grade concrete and Fe-415 grade reinforcing steel.
- (b) The Stress-Strain relationship used is as per IS: 456:2000. The basic material properties used are as follows:

Modulus of Elasticity of steel, Es = 21,0000 MPa Ultimate strain in bending, $\mathcal{E}cu = 0.0035$ Characteristic strength of concrete, fck = 30 MPa Yield stress for steel, fy = 415 MPa

Modelling of Structure

The soil is idealized as a classical Winkler foundation - beam on elastic springs. The soil passive resistance is considered to be offered by linear elastic springs.

Spring constants for the Sub - structure elements - retaining diaphragm wall and the anchor piles are calculated using the elastic moduli of the soil strata. (Ref Soil profile).

- The structure is considered as a plane frame an assemblage of line elements within plane loading.
- The supports at the end of the retaining diaphragm wall are considered to be effectively restrained against translation in the Y direction.
- The supports at the end of the anchor piles are considered to be effectively restrained against translation in the X and Y directions.
- Supports for the retaining diaphragm wall and anchor piles are taken to be at level -28.00 m.
- Each of the other joints (node) have three degrees of freedom (DOF'S).
- The joint between the deck and the retaining diaphragm wall and that between the deck and the anchor piles are considered to be very rigid.
- Mobilisation of the soil's passive resistance is effected through linear elastic soil springs. Structural analysis package, "STAAD.Pro" is used for the analysis

Table 1: Spring Constants for Retaining "T" Shaped Diaphragm Wall

Spring No	Level (m)	Spring Value (MT/m)
1	-17.00	1247
2	-18.00	2493
3	-19.00	2493
4	-20.00	2493
5	-21.00	2493
6	-22.00	2493
7	-23.00	2493
8	-24.00	11200
9	-25.00	11200
10	-26.00	11200
11	-27.00	11200
12	28.00	9251

Table 2: Spring Constants for Vertical Pile

Spring No	Level (m)	Spring Value (MT/m)
13, 14 & 15		0
16	-3	68
17	-4	330
18	-5	330
19	-6	330
20	-7	330
21	-8	330
22	-9	330
23	-10	330
24	-11	330
25	-12	330
26	-13	330
27	-14	330
28	-15	330
29	-16	330
30	-17	502
31	-18	2403
32	-19	2403
33	-20	2403
34	-21	2403
35	-22	2403
36	-23	3101
37	-24	10790
38	-25	10790
39	-26	10790
40	-27	10790
41	-28	Very Large

Table 3: Spring Constants for Racker Pile

Spring No	Level (m)	Spring Value (MT/m
42, 43 & 44		0
45	-3	68
46	-4	330
47	-5	330
48	-6	330
49	-7	330
50	-8	330
51	-9	330
52	-10	330
53	-11	330
54	-12	330
55	-13	330
56	-14	330
57	-15	330
58	-16	330
59	-17	502
60	-18	2403
61	-19	2403
62	-20	2403
63	-21	2403
64	-22	2403
65	-23	3101
66	-24	10790
67	-25	10790
68	-26	10790
69	-27	10790
70	-28	Very Large

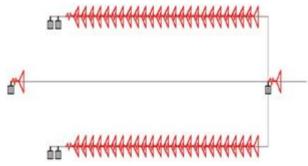


Fig 1: Top View of Substructure

Fig 2: 3D View of Substructure

Loads consider on Substructure

- Dead Load
- Earth pressure, lateral pressure due to surcharge
- Live loads: Electrical wharf crane
- BGML load
- Loaded crawler crane
- IRC 70R tracked and wheeled vehicle Stack load
- Bollard pull Seismic loading

Load combination consider for Substructure

- Wharf crane + one BGML (between wharf crane bogies) + UDL on the balance deck.
- Wharf crane + one BGML between wharf crane bogies + one BGML outside wharf crane bogies + UDL over the balance deck.
- Wharf cranes + one BGML between wharf crane bogies + crawler crane running perpendicular to the berth.
- Wharf crane + one BGML between wharf crane bogies + crawler crane running parallel to the berth.

IV. RESULTS & DISCUSSIONS

Table 4: Maximum Bending moment, Axial force values with varying Stack load

_								
S.	Variable			Max Negative	Axial forces			
No	Load	ofStack load (Tons/m²)	B.M.of Diaphragm wall(Tons-m)	B.M.of Diaphragm wall(Tons-m)	Racker pile (Tons)	Vertical pile (Tons)		
1	Stack load	6	2948.75	709.35	165.2	1254.42		
2	Stack load	6.25	3071.61	738.90	165.82	1260.73		
3	Stack load	6.5	3194.47	768.45	166.38	1267.04		
4	Stack load	6.75	3317.33	798.00	167.08	1273.35		
5	Stack load	7	3440.19	827.55	168.08	1290.8		

Table 5: Maximum Bending moment, Axial force values
with varving Crane load

S.	Variable	Intensity	Max positive	Max Negative	Axial forces		
No	Load	ofCrane load (Tons)	B.M.of Diaphragm wall	B.M.of Diaphragm wall(Tons-m)	Racker pile(Tons)	Vertical pile(Tons)	
			(Tons-m)				
1	Crane load	15	2192.25	551.835	121.725	913.50	
2	Crane load	16	2338.41	588.624	129.84	974.40	
3	Crane load	17	2484.57	625.413	137.96	1035.31	
4	Crane load	18	2630.73	662.202	146.08	1096.22	
5	Crane load	19	2776.89	698.991	154.20	1157.13	

Table 6: Maximum Bending moment, Axial force values
with varying Mooring Force

S.	Variable			Max Negative	Axial forces	
No	Load	Mooring Force (Tons)	B.M.of Diaphragm wall (Tons-m)	B.M.of Diaphragm wall (Tons-m)		Vertical pile(Tons)
1	Mooring Force	150	2976.11	787.4	175.93	1218.04
2	Mooring Force	180	2986.25	797.56	178.58	1232.89
3	Mooring Force	200	3002.13	813.75	182.73	1241.95
4	Mooring Force	220	3029.35	840.02	189.54	1247.74

V. CONCLUSIONS

- The percentage of increase in the bending moment of "T" shaped diaphragm wall with respect to Mooring force of 5%,15%, 25%, 35% were 0.35,0.54,0.89,1.05 respectively.
- 2) The percentage of increase in the Axial force of Racker pile with respect to Mooring force of 5%,15%, 25%, 35% were 1.60,2.45,3.87,4.50 respectively.
- 3) The percentage of increase in the Axial force of vertical pile with respect to crane load of 5%,15%, 25% 35% were 0.47,0.74,1.23,1.50 respectively.
- 4) The variation in Crane load &Mooring force plays a major role in influencing the bending moment of "T" shaped diaphragm wall when compared to Stack load.
- 5) The variation in Mooring force plays a major role in influencing the Axial force of vertical pile when compared to Stack load.

REFERENCES

- Andrew T. Metzger, Jonathan Hutuchinson and Jason Kwiatkowski(2014)," Measurement of Marine Vessel Berthing Parameters", ELSEVIER, Marine Structures 39(2014) 350-37.
- [2] Go¨ kdeniz.Nes-er "Lateral Forces on Pile due to Soil Movements in Soft Marine Clay Slopes and Slope Stabilization using Piles",(2006) M.S. Thesis submitted in Ocean Engineering Centre, IIT Madras. IS: 2911 - Part 1 / Sec 1 /Sec 2(1979). Code of practice for design and construction of pile foundations: Part 1 Concrete piles, Section 1 Driven cast in-situ, concrete piles
- [3] Muthukkumaran, K. 2008. Lateral load capacity of single pile located atslope crest, *Indian Geotechnical Journal* 38(3), 278-294
- [4] Phoon.k.k1988. Fender forces in ship berthing. Communication on hydraulic and geotechnical engineering. Delft University of Technology, Department of Engineering.
- [5] Premalatha.P (2006). Analysis of Laterally loaded Piles in Soilwith Stiffness Increasing ith Depth .Journal of Geotechnical and Geo environmental Engineering.
- [6] R.Sundharavadivelu(2007). Fender as energy dissipaters. The Dock and Harbour Authority 59 (694), 132–134. Cummins, W.E., 1962. The impulse response function and ship motions, Hamburg. In: Proceedings of Symposium on Ship Theory. Institute forSchiffbau der University" Hamburg, Hamburg, Germany, pp.101–109.
- [7] M. Gokul Krishnan, D. Sathyanarayanan "Behavior of an open type berthing structure under earthquake condition" IGC 2009, Guntur, INDIA page number 553- 557.
- [8] G.T. Naidu, Dr. K.V.G.D. Balaji, T. Abhiram Reddy "Behavior of varying Stack, Crane and Mooring forces" ISSN0973 Volume 10, Number 12 (2015) pp 32159-32174.