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a b s t r a c t 

There are several techniques implemented, in an underwater target tracking environment, 

for the nonlinear dynamic systems in Gaussian and non-Gaussian environments. It is as- 

sumed with non-Gaussian distribution to make the problem part of the non-Gaussian dis- 

tribution, and is measured in terms of calculations of plenty of scenarios simulated to vali- 

date the potential of the sub-optimal filter.This research is further carried out by consider- 

ing two categories of non-Gaussian noises i.e.a mixture of Gaussian noises and shot noise. 

To evaluate tracking in Gaussian and non-Gaussian noises, the suboptimal filters, Extended 

Kalman filter, and Unscented Kalman filter (UKF algorithms are considered. Gaussian noise 

is a statistical noise having probability density function equal to the normal distribution 

function . The suboptimal filters, Extended Kalman filter, and Unscented Kalman filter (UKF) 

algorithms are considered to evaluate tracking in Gaussian and non-Gaussian noises. To 

make further evaluation of the above said algorithms, they are compared with theoretical 

Cramer-Rao lower bound. The efficiency of UKF is in terms of percentage of non-Gaussian 

noise corrupted measurements, for which solution is obtained within a short time. The 

application of Monte-Carlo method at this simulations trapped accurate results. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

1. Introduction 

1.1. Background 

The usage of techniques by using bearing measurements for tracking Underwater has decades of history. They are also

applied to surveillance of enemyships and submarines. Tracking techniques are most useful in anti-submarine warfare when

observers are under attack. 

Bearing measurement is the angle measured from a reference axis to the line joining target and observer. Tracking with

the help of only bearing measurements, popularly known as Bearings-Only Tracking (BOT), has a wide range of applications.

BOT is being studied extensively since the 1980s [1–2] . The analysis of the movement of the target like speed, course, and

range is termed as Target Motion Analysis, popularly known as TMA. 

The justification of the work is to find kinematics of target with available measurements, which are corrupted with non-

Gaussian noises. The scenario consisting of single sonar mounted on the observer, operating in passive mode, is used for
� This paper is for CAEE special section VSI-mis. Reviews processed and recommended for publication to the Editor-in-Chief by Guest Editor Dr. Chan-Yun 

Yang. 
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tracking the target. The low risk has recognized by following others when the sonar operation in passive mode. The TMA

of the target moving with incessant velocity has been studied and discussed in the literature.The bearing observations are

tangentially bonded to the target state i.e., range of the target, making the process nonlinear. The nonlinear relation between

measurement and target state is mathematically given in Section 2.1 . As the process of tracking is non-linear, the observer

following a constant velocity and straight path makes the process unobservable. So, S-manoeuvre is used for observing the

dynamic behavior of the enemy model so that the process becomes more observable. These observations of the process

in underwater scenarios are discussed in [3–5] . The solution to the above problem was obtained by using conventional

methods like Maximum Likelihood estimator, Pseudo Linear estimator, least squares estimators, etc and by using modern

methods from Kalman filter to spare-grid Gauss-Hermite filter. 

For the EKF, the state initializations should be more precise and the noise in state and measurements should be following

Gaussian distribution. As EKF is a suboptimal filter, the solution diverges as the nonlinearity and the noise increases. Other

filters like Unscented Kalman Filter (UKF) [6–8] , Particle filter (PF), cubature Kalman filter (CKF), hybrid filters, etc. [9–

15] approximates the target state and their probability densities using deterministic resampling method. 

1.2. Literature 

In the real-time application of target tracking, the process noise and the measurement noise will not follow Gaussian

distribution. So, the filtering algorithms designed based on just the Gaussian noise model may not perform well in real-

time tracking problems. The solution to the non-Gaussian noise models includes PF [16] which depends on Monte-Carlo

integration and sampling techniques and Gaussian sum filter [17 , 18] that depends on the mixing up of different Gaussian

distributions with different variances. In PF, the need for the assumption of probability density functions is eliminated but

the computational effort increase as the number of particles increases for the sake of accuracy in estimated solution. Hence

research is being carried [19 , 20] to reduce the disadvantages in PF due to sample impoverishment and degeneracy. Another

filter that shows a comparable functioning to that of PF in passive target tracking is the Gaussian sum cubature Kalman

filter [21] . Other filters include improved Gaussian mixture filter algorithm [22] , and limited Gaussian mixture model [23] .

The weight of the Gaussian components is assumed to be persistent in all the above techniques while communicating the

uncertainty through the non-linear system. These are refurbished at the measurement update phase only. This premise is

viable when the measurements are available continuously or have low noise levels and the system has minute nonlinearity.

The same can’t be applied for non-linear cases in real-time. A new Gaussian sum filter, that makes use of weights of the

Gaussian mixture model in both measurement and time update phases, was proposed by Terejanu [23] . 

1.3. Motivation 

All the suboptimal filters have been suggested as solutions for the TMA under Gaussian noise conditions. Filters like

particle filter and shifted Rayleigh filter [11] were suggested for filtering non-linear systems under the non-Gaussian noise

conditions but have high computational complexities. To perform highly complicated computations, more memory is re-

quired and needs a high-speed processor. So, work is carried out to find the ability of the suboptimal filters (EKF and UKF,

that have low computational complexity) under non-Gaussian noise assuming that the non-Gaussian noise prevails only at

certain time samples and not throughout the process. 

The estimated target parameters are erroneous as the system model and measurements are corrupted with noise. These

errors are reduced using different filtering algorithms. For the weapon to be fired on to the target, these errors must be

low, and the errors must be reduced in less time.In surveillance applications, accuracy in estimated parameters must be ob-

tained in a short period. So, the suboptimal filters with less complexity in calculations are more advantageous than complex

nonlinear filters. 

Thebehavior of suboptimal filters, UKF, and EKF are evaluated in the shot noise (SN) and Gaussian mixture noise (GMN)

environments. The target is presumed to be exhibit constant velocity motion. The mathematical modeling of the algorithms

is discussed in detail in Section 2 . The scenarios on different Angle on Target Bow (ATB) are considered for simulation. ATB

is the discrepancy between the target course and the line of sight. The target encountering the observer at high (41 o – 90 o ),

medium (31 o – 40 o ), and low (0 o – 30 o ) ATB scenarios are considered to assess the algorithms. The target moves away from

the observer,with ATB greater than 90 o , and is therefore of no worth in tracking. The simulation and results obtained using

MATLAB are mentioned in Section 3 . The overall summary of the work done is given in Section 4 . 

2. Mathematical modeling 

2.1. Target motion analysis 

Consider the observer is at position ‘O’ initially and the target movement is assumed to be straight-line keeping the

speed at a constant value. The state vector at time instant ‘ τ ’ of the observer [1] is represented as in Eq. (1) 

S o ( τ ) = 

[
v xo ( τ ) v yo ( τ ) r xo ( τ ) r yo ( τ ) 

]T 
(1) 
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where v xo ( τ ), v yo ( τ ), r xo ( τ ), r yo ( τ ) represents the speed and range of the observer in x and y -direction. The change in the

observer position is obtained from its course and speed as in Eq. (2) and Eq. (3) 

d r xo ( τ ) = v xo ( τ ) ∗ sin ocr ∗ t (2)

d r yo ( τ ) = v yo ( τ ) ∗ cos ocr ∗ t (3)

where dr xo ( τ ), dr yo ( τ )are the change in x-coordinate and y-coordinates of observer and ocr is the observer course angle and

t is the time of one second [1] . The relative state vector [1 , 3] of the target is represented as in Eq. (4) 

S s ( τ ) = 

[
v x ( τ ) v y ( τ ) r x ( τ ) r y ( τ ) 

]T 
(4)

where v x ( τ ), v y ( τ ), r x ( τ ), r y ( τ ) are relative components of speed and range in x and y coordinates respectively. The relative

state vector for the next time based on the present time state vector is calculated as in Eq. (5) 

S s ( τ + 1 ) = A ( τ ) S s ( τ ) + b ( τ + 1 ) + ωC ( τ ) (5)

where A ( τ ) is the system dynamics matrix calculated as in Eq. (6) 

A ( τ ) = 

⎡ 

⎢ ⎣ 

1 0 0 0 

0 1 0 0 

t 0 1 0 

0 t 0 1 

⎤ 

⎥ ⎦ 

(6)

C ( τ ) is the process noise and ω is calculated as in Eq. (7) 

ω = 

⎡ 

⎢ ⎣ 

t 0 

0 t 

t 2 / 2 0 

0 t 2 / 2 

⎤ 

⎥ ⎦ 

(7)

b ( τ ) is a deterministic matrix and is calculated as in Eq. (8) 

b ( τ ) = 

⎡ 

⎢ ⎣ 

0 

0 

−( r xo ( τ ) − r xo ( τ − 1 ) ) 
−( r yo ( τ ) − r yo ( τ − 1 ) ) 

⎤ 

⎥ ⎦ 

T 

(8)

The covariance of the process noise is calculated as in Eq. (9) 

Q ( τ ) = E 
[
( ωC ( τ ) ) ( ωC ( τ ) ) 

T 
]

Q ( τ ) = σ 2 

⎡ 

⎢ ⎣ 

t 2 0 t 3 / 2 0 

0 t 2 0 t 3 / 2 

t 3 / 2 0 t 4 / 4 0 

0 t 3 / 2 0 t 4 / 4 

⎤ 

⎥ ⎦ 

(9)

where σ 2 represents the variance in the process noise. 

The measurement equation for this application has only bearing angles and the bearing angle β( τ ) is represented as in

Eq. (10) 

βm 

( τ ) = tan 

−1 ( r x ( τ ) / r y ( τ ) ) + Y B (10)

where ϒB is the measurement noise, assumed to be following Gaussian distribution with σ 2 
B 

variance. 

2.2. UKF Algorithm 

UKF is straight forward add-on of the Unscented Transformation (UT) to the recursive estimation. In UKF, the concatena-

tion of the original states and noise variables are delineated as the state random variables. The sigma point selection method

of UT is implemented to the delineated state random variables to calculate the corresponding matrix of sigma points. The

weighted mean and covariance of posterior sigma points are utilized to estimate the mean and covariance of the state of the

target. [7 , 8] . The flowchart showing the implementation of the UKF algorithm is as shown in Fig. 1 and the implementation

steps are as follows: 

a) Let L 1 be the dimension of the target state vector. (2 L 1 + 1) state vectors are calculated from the initial points using

sigma points as in Eq. (11) 

S ( τ ) = 

⎡ 

⎣ 

S s ( τ ) 

S s ( τ ) + 

√ 

( L 1 + λ) + P ( τ ) 

S s ( τ ) −
√ 

( L 1 + λ) + P ( τ ) 

⎤ 

⎦ 

T 

(11)
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Fig. 1. Flow chart representing UKF algorithm 

 

Here λ is a scaling parameter and is calculated as follows. 

λ = ϑ 

2 ( L 1 + α) − L 1 

ϑ is set to a small positive value (e.g., 1e-3) that determines how the mean is surrounded by the sigma points. α, set to

two, is a secondary scaling parameter as defined in UT [11] . 

a) Based on the process model Eq. (5) , transform the sigma points. 

b) The predicted state estimate at the time ( τ + 1) with τ measurements is calculated as in Eq. (12) 

S ( τ + 1 ) = 

2 L 1 ∑ 

i =0 

W 

( m ) 
i 

S ( i, ( τ + 1 ) ) (12) 

c) The predicted error covariance matrix, assuming additive and independent process noise, is calculated as in Eq. (13) 

P ( τ + 1 ) = 

2 L 1 ∑ 

i =0 

W 

( c ) 
i [ S ( i, ( τ + 1 ) ) − S s ( τ + 1 ) ] × [ S ( i, ( τ + 1 ) ) − S s ( τ + 1 ) ] 

T + Q ( τ ) (13) 

d) The sigma points are updated using the predicted mean and predicted covariance as follows in the Eq. (14) 

S ( τ + 1 ) = 

⎡ 

⎣ 

S s ( τ + 1 ) 

S s ( τ + 1 ) + 

√ 

( L 1 + λ) + P ( τ + 1 ) 

S s ( τ + 1 ) −
√ 

( L 1 + λ) + P ( τ + 1 ) 

⎤ 

⎦ 

T 

(14) 

e) Based on the measurement model given in Eq. (12) , transform the predicted sigma points. 
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f) Predicted measurement matrix is calculated as in Eq. (15) 

ˆ M ( τ + 1 ) = 

2 L 1 ∑ 

i =0 

W 

( m ) 
i 

Y ( τ + 1 ) (15)

where Y is given as in Eq. (16) 

Y ( τ + 1 ) = h ( S ( τ + 1 ) ) (16)

a) The innovation covariance matrix is calculated as in Eq. (17) 

P yy = 

2 L 1 ∑ 

i =0 

W 

( c ) 
i 

[
Y ( i, ( τ + 1 ) ) − ˆ M ( τ + 1 ) 

]
×

[
Y ( i, ( τ + 1 ) ) − ˆ M ( τ + 1 ) 

]T + σ 2 
B ( τ ) (17)

b) The cross-covariance matrix is calculated as in Eq. (18) 

P xy = 

2 L 1 ∑ 

i =0 

W 

( c ) 
i [ S ( i, ( τ + 1 ) ) − S s ( τ + 1 ) ] 

[
Y ( i, ( τ + 1 ) ) − ˆ M ( τ + 1 ) 

]T 
(18)

Kalman gain is calculated as in Eq. (19) 

G ( τ + 1 ) = P xy P 
−1 
yy (19)

a) The estimated state is calculated as in Eq. (20) 

S S ( τ + 1 ) = S ( τ + 1 ) + G ( τ + 1 ) 
(
M ( τ + 1 ) − ˆ M ( τ + 1 ) 

)
(20)

where M ( τ + 1)is a matrix of measurement vector. 

a) The estimated error covariance matrix is updated as, given in Eq. (21) 

P ( τ + 1 ) = P ( τ + 1 ) − G ( τ + 1 ) P yy G 

T ( τ + 1 ) (21)

2.3. EKF Algorithm 

The EKF linearizes the non-linearities in the state and measurement equations and then performs the Kalman filtering.

Here the non-linearity is considered in the measurements obtained [24] . So, the measurement model matrix is linearized

using Taylor series expansion and obtained as follows in Eq. (22) 

H ( τ ) = 

[
0 0 cos β( τ ) /R − sin β( τ ) /R 

]
(22)

where R is the range of the target from the observer obtained using Eq. (23) 

R = 

√ 

( r x ( τ ) ) 
2 + ( r y ( τ ) ) 

2 (23)

The covariance of the noise in the measurement equation is given as ∅ ( τ ) which is a maximum level of Gaussian noise

in bearings with a standard deviation of 0.33 0 . The state vector time update Eq.(24) is given as 

S s ( τ + 1 ) = A ( τ − 1 ) ∗ S s ( τ ) (24)

The estimated state covariance matrix update Eq. (25) is given as 

P ( τ + 1 , τ ) = A ( τ + 1 , τ ) ∗ P ( τ − 1 ) ∗ ( A ( τ, τ ) ) 
T + Q ( τ + 1 ) (25)

The Kalman gain [2] for the EKF is given as Eq. (26) 

G ( τ ) = P ( τ + 1 , τ ) H 

T ( τ ) 
(
H ( τ ) ∗ P ( τ + 1 , τ ) H 

T ( τ ) + ∅ ( τ ) 
)−1 

(26)

The measurement updates of the estimated state and estimated error covariance matrices are given respectively as fol-

lows in Eq. (27) and Eq. (28) 

S s ( τ + 1 , τ + 1 ) = S s ( τ + 1 , τ ) + G ( τ ) ∗ Z ( τ ) (27)

P ( τ + 1 , τ + 1 ) = ( I − G ( τ ) ∗ H ( τ ) ) ∗ P ( τ + 1 , τ ) ∗ ( I − G ( τ ) ∗ H ( τ ) ) 
T + G ( τ ) ∗ ∅ ( τ ) ∗ ( G ( τ ) ) 

T (28)

The flowchart representing the EKF algorithm is as shown in Fig. 2 . For each time sample, the estimated target parame-

ters are evaluated against theoretically calculated true target parameters. If the acceptance criteria defined in Section 3 are

achieved, then the solution is said to be obtained and the estimated parameters are forwarded to the weapon guidance cell

for further process. 
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Fig. 2. Flow chart representing EKF algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Non-Gaussian noises 

In this work, two forms of non-Gaussian noise conditions, SN and GMN, are considered meticulously. SN is generally due

to statistical fluctuations in the signal itself and the statistical interaction process. The noise amplitude increases or decreases

suddenly in the case of SN. Hence the same is designed in MATLAB using the " randn ” function where the Gaussian noise is

added with some random high amplitude noise as follows in Eq. (29) 

Shot noise = Gauss noise + temp + 0 . 5 ∗ randn (29) 

Here, temp is a random high-amplitude noise added to the Gaussian noise and (0.5 ∗randn )is added to make the variance

of the distribution a random value. So, the SNcalculated will have a high amplitude and random variance. 

The Gaussian mixture density applied has different variances varied from sample to sample and for which the data

conditioned on the variance are normal. So, the GMN is generated by summing up of Gaussian noise with Gaussian noises

of varying variances as given below. 

Gaussmix = Gaussnoise + 2 ∗ randn + randn + 4 ∗ randn + 6 ∗ randn (30)

In Eq. (30) , (2 ∗randn ), (4 ∗randn ), (6 ∗randn ) individually generate Gaussian noises with different variances. These noises are

added to form a GMNof random variance. Fig. 3 gives the histogram of all the three noise types simulated. These histograms

give the count of different noise amplitudes used in the simulation of the algorithms with different noise types. 

Fig. 3 gives the noise samples distribution during the simulation of 1800 samples. Fig. 3 (a) shows the distribution of

Gaussian noise samples, where all the noise amplitudes are distributed between -1 o to 1 o . The noise samples are distributed

according to the Gaussian distribution making the mean of noise amplitudes zero. Fig. 3 (b) gives the distribution of SN

samples. The SN is applied only for some random samples and the rest of the samples will have Gaussian noise amplitude.

It can be observed from Fig. 3 (b) that the SN samples are the ones having an amplitude greater than 1 degree. For about

800 random samples, noise with higher amplitudes is applied and the mean of noise amplitudes is also not zero, which

reciprocates the applied SN samples. Fig. 3 (c) gives the distribution of GMN samples. GMN is a mixture of Gaussian noises
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Fig. 3. Histogram of different noises used in this work. (a). Gaussian noise histogram. (b). Histogram of SN added to Gaussian noise. (c) Histogram of GMN 

added to Gaussian noise. 

 

 

 

 

 

 

 

 

 

 

with different variances. So, it does not completely follow Gaussian distribution and is a combination of gaussian noises as

shown in Fig. 3 (c). 

2.5. Cramer-Rao lower bound 

The Cramer-Rao lower bound (CRLB) provides a lower bound on the variance of an unbiased estimator for comparing the

performance of any estimator. It is defined that for a nonlinear discrete-time system, the covariance of the estimated state

follows the condition in Eq. (31) 

E 

[ (
ˆ S S ( τ ) − S S ( τ ) 

)(
ˆ S S ( τ ) − S S ( τ ) 

)T 
] 

≥ J −1 
τ (31)

where J τ is an information matrix, which is calculated recursively [9] , using Eq. (32) 

J τ = D 

22 
τ−1 − D 

21 
τ−1 

(
J τ−1 + D 

11 
)−1 

D 

12 
τ−1 (32)

where D 

11 , D 

12 , D 

21 and D 

22 , for additive Gaussian noise, are given as follows in Eq. (33) 

D 

11 = A 

T Q 

−1 A 

D 

21 = −A 

T Q 

−1 

D 

12 = 

(
D 

21 
)T 

D 

22 
τ−1 = Q 

−1 + E 

[ 
H 

T 
τ

(
σ 2 

B 

)−1 
H τ

] 
(33)

Here H τ is given by the Jacobian of the measurement function, H τ = [ 0 0 cos ˆ β/R − sin 

ˆ β/R ] and 

ˆ βis the pre-

dicted bearing measurement. The CRLB of range error iscalculated as in Eq. (34) , 

CRLB _ R τ = 

√ 

J −1 
τ ( 3 , 3 ) + J −1 

τ ( 4 , 4 ) (34)

Similarly, the CRLB of speed error is defined as in Eq. (35) , 

CRLB _ S τ = 

√ 

J −1 
τ ( 1 , 1 ) + J −1 

τ ( 2 , 2 ) (35)

CRLB of course error is calculated as in Eq. (36) , 

CRLB _ C τ = tan 

−1 
(√ 

J −1 ( 1 , 1 ) / 
√ 

J −1 ( 2 , 2 ) 

)
(36)
τ τ



8 K. Jahan and S. Koteswara Rao / Computers and Electrical Engineering 87 (2020) 106783 

Fig. 4. Target and observer scenario 

Table. 1 

Scenarios considered for performance evaluation. 

Scenario No. Starting range (m) Initial bearing (deg) Speed of target 

(m/s) 

Speed of observer 

(m/s) 

The course of the 

target (deg) 

ATB 

1 3000 0 12 8 170 Low 

2 3000 0 12 8 155 

3 3000 0 12 8 163 

4 3000 0 12 8 145 Medium 

5 3000 0 12 8 140 

6 3000 0 12 8 148 

7 3000 0 12 8 135 High 

8 3000 0 12 8 110 

9 3000 0 12 8 100 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Simulation and results 

3.1. Initializations 

This methodological researchassesses the efficiency of both algorithms through their implementation in the MATLAB PC

setting.The measurements are presumed to be incessantly available for each second. In its course, the observer maneuvers to

achieve the observability of the target. Firstly, the observer has a 90 ° course for two minutes and then turns 180 o to hit the

first line in maneuver, with a turning pace of 0.5 o per second and attains a 270 ° course. The observer is considered to take

four minutes for a complete maneuver of 180 o as shown in Fig. 4 . The target is assumed to be having different introductory

courses in different scenarios, which is given in Table 1 . With Gaussian noise, the standard deviation in the error is assumed

to be 0.33 o , which is 1 σ error according to Gaussian distribution and 3 σ error will be 1 o . The values considered assuming

that the advanced sonar has less probability of error in measurements. With non-Gaussian noise, the error in measurements

given by sonar is assumed to be a little high and not more than 3 o . So, the standard deviation in error with non-Gaussian

noise is 1 o , which is considered as 1 σ error. 

The target state vector’s introductory estimate for implementation of both algorithms is taken as in Eq. (37) 

S s ( 0 , 0 ) = 

[
5 5 50 0 0 sin βm 

50 0 0 cos βm 

]T 
(37) 

The prediction of velocity components of the target is difficult as only angle measurements are available. So, they’re

presumed as 5m/s each.The introductory position of the target is calculated based on the day’s sonar range, supposed to be

50 0 0m.The initial value of the state covariance matrix may be taken as a diagonal matrix if the initial state estimation is

uniformly distributed and is given as in Eq. (38) 

P ( 0 , 0 ) = diagonal 

⎡ 

⎢ ⎣ 

4 v 2 x ( 0 , 0 ) / 12 

4 v 2 y ( 0 , 0 ) / 12 

4 r 2 x ( 0 , 0 ) / 12 

4 r 2 y ( 0 , 0 ) / 12 

⎤ 

⎥ ⎦ 

(38) 

The simulation and filtering for 100 Monte-Carlo runs are performed for low, medium, and high ATB scenarios mentioned

in Table 1 using MATLAB [6] for both EKF and UKF algorithms. The performance is assessed based on the Root-Mean-Squared

(RMS) error of the target parameters and the solution is obtained based on the criteria of acceptance for 100 Monte-Carlo

runs explained as follows. 

The acceptance criterion for 100 Monte-Carlo runs: 

Error in estimated target range parameter < = (8/3)% of the true range 

Error in estimated target course parameter < = 1 °. 
Error in estimated target speed parameter < = 0.33m/s. 

In general, EKF and UKF are said not to be compatible with non-Gaussian noises. But the noise will not be completely

non-Gaussian. So, it is considered that non-Gaussian noise occurs only at certain samples, and analysis of the consistency of
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Table. 2 

Time of convergence in seconds for scenarios with Gaussian noise. 

Scenario EKF UKF 

Range Course Speed Convergence time Range Course Speed Convergence time 

1 378 319 523 523 499 381 540 540 

2 272 300 329 329 410 357 441 441 

3 1592 1578 1592 1592 456 373 492 492 

4 Fail Fail 1727 Fail 342 305 374 374 

5 282 254 251 282 366 341 395 395 

6 267 302 330 330 366 328 393 393 

7 271 311 318 318 375 365 399 399 

8 338 415 338 415 491 498 515 515 

9 343 423 235 423 533 590 553 590 

Table. 3 

Time of convergence in seconds for scenarios with SN. 

Scenario EKF UKF 

Range Course Speed Convergence time Range Course Speed Convergence time 

1 402 314 606 606 516 398 545 545 

2 256 255 283 283 396 377 424 424 

3 1603 1603 1603 1603 468 392 507 507 

4 1648 1624 1635 1648 345 332 371 371 

5 298 259 259 298 366 372 387 387 

6 270 268 283 283 363 356 383 383 

7 648 644 648 648 374 389 392 392 

8 418 438 445 445 509 556 534 556 

9 404 438 402 438 544 600 560 600 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the filters to handle the noise is carried out. Convergence time is the point where the errors in estimated target parameters

are within the acceptance criteria. Once the solution is converged, a weapon can be fired onto the target. The solution in

real-time needs to be obtained in a short time, otherwise, there is a risk of getting tracked by the target. So, taking the

convergence time to be below 10 minutes, the algorithms are evaluated for maximum noise amplitude of 3 o . For EKF, the

solutions were not obtained for most of the scenarios, and the convergence time, for which solution was obtained, was

more than 900 seconds which is not worth in real-time tracking problems. As EKF is unstable in nature and the results are

unpredictable with increasing non-linearity or noise, its performance is evaluated only for certain scenarios whose solution

can be obtained. 

3.2. Results 

Table 2 represents the convergence times of the solution obtained for both EKF and UKF algorithms for low, medium,

and high ATB scenarios with Gaussian noise. The simulation is carried out for 1800 seconds. The Gaussian noise is applied

throughout the simulation period and as the measurements are assumed to be obtained every second, the noise is applied

for all 1800 samples. For scenario 1 of the low ATB scenario mentioned in Table 1 , the convergence times of range, course,

and speed are 378s, 319s, and 523s respectively for the EKF algorithm. The total convergence time is 523s for the same

scenario for EKF. The convergence times for the same low ATB scenario are 499s, 381s, and 540s respectively for the UKF

algorithm and the total convergence time is 540s. Similarly, the convergence times are obtained for another low, medium,

and high ATB scenarios. It can be observed from the data in Table 2 that EKF is unstable even when the noise is Gaussian

when compared to UKF for 100 Monte-Carlo runs. 

On the originally perceived line of sight the observer has to execute S-maneuver. So, for consistency in scenarios, the

original bearing is selected as 0 o . Scenario with an initial bearing of 30 o is similar to the scenario with an initial bearing of

0 o turned by 30 o . 

For EKF and UKF, Table 3 displays the convergence times obtained for 100 random SN samples with a median noise

amplitude of 3 °.SN is assumed to be occurring randomly at 100 samples out of 1800 samples taken for simulation. The

data in Table 2 compared to the data in Table 3 respectively depicts the unstable and unpredictable performance of EKF,

while the solutions obtained by UKF are consistent. For scenario 4, the convergence time was not obtained for EKF with

the Gaussian noise environment as in Table 2 , but for the same scenario, the convergence times are obtained in SN and

Gaussian mixture environments as in Table. 3 and Table. 4 respectively. The convergence times obtained are also not within

600 seconds which is again of no use in case of tracking the target in real and hence instability in the algorithm of EKF is

clearly understood. 

For EKF and UKF, Table 4 reflects the convergence times obtained for 800 random GMN samples with 2.2 o noise am-

plitude.GMN is assumed to be occurring randomly at 800 samples out of 1800 samples considered for simulation. The
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Table. 4 

Time of convergence in seconds for scenarios with GMN. 

Scenario EKF UKF 

Range Course Speed Convergence time Range Course Speed Convergence time 

1 348 997 361 997 500 424 545 545 

2 358 906 361 906 416 409 447 447 

3 446 997 910 997 453 421 498 498 

4 362 998 361 998 372 381 395 395 

5 1528 1572 1570 1572 465 482 573 573 

6 358 997 358 997 385 391 401 401 

7 286 301 907 907 387 424 401 424 

8 489 996 817 996 501 583 516 583 

9 Fail 1791 Fail Fail 546 651 557 651 

Fig. 5. (a) RMS error in estimated range with Gaussian Noise for Scenario 1 (b) RMS error in estimated course with Gaussian Noise for Scenario 1 (c) RMS 

error in estimated speed with Gaussian Noise for Scenario 1 

 

 

 

 

 

 

 

 

 

 

 

amplitude of noise in measurement is taken care of not to exceed 2.2 o . From the data in Table. 4 , it can be inferred that

EKF exhibits unstable nature while UKF provides compatible results. 

In Fig. 5 , Fig. 6 and Fig. 7 , for low ATB scenario 1, the RMS errors in the target range, course, and speed calculations

are shown for both EKF and UKF algorithms assuming that the noise is Gaussian noise, SN and GMN respectively. The RMS

error in range, course, and speed estimates of the target is also compared with the theoretical CRLB to access the bias in

estimators. It can be observed from the figures that UKF approaches the theoretical CRLB whereas the EKF estimator is far

away from the bounds. 

When SN was applied to algorithms periodically, the solution was obtained with a maximum of 72 samples for EKF and

180 samples for UKF. Similarly, when GMN was applied, the solutions were acquired with a maximum of 60 noise samples

for EKF and 95 samples for UKF. The noise can’t be periodic all the time. So, the non-Gaussian noises were applied to the

algorithms at randomly selected samples of data. When SN was applied to randomly selected samples of data, the solution

was obtained with a maximum of 90 samples for EKF and 200 samples for UKF. Similarly, when GMN was applied, the

solutions were acquired with a maximum of 100 samples for EKF and 170 samples for UKF. However, with Gaussian noise,
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Fig. 6. (a) RMS error in estimated range with SN for Scenario 1 (b) RMS error in estimated course with SN for Scenario 1 (c) RMS error in estimated speed 

with SN for Scenario 1 

Fig. 7. (a) RMS error in estimated range with GMN for Scenario 1 (b) RMS error in estimated course with GMN for Scenario 1 (c) RMS error in estimated 

speed with GMN for Scenario 1 
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Table. 5 

The percentage of non-Gaussian noise measurements that UKF can tolerate. 

Noise type Samples occurrence Low ATB scenario Medium ATB scenario High ATB scenario 

Shot noise Continuous 33.3 33.3 3.5 

Shot noise Random 47.2 27.7 4.4 

Gaussian mixture noise Continuous 50 50 4.7 

Gaussian mixture noise Random 61 38.8 5.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the algorithms work effectively even when the noise prevailed throughout the process. But, due to the unstable nature of

EKF, the algorithm could not provide a solution to certain scenarios even in the presence of Gaussian noise. 

3.3. Discussions 

The analysis for UKF under the influence of the non-Gaussian noises is given in Table 5 , with a maximum noise amplitude

of 3 o . The percentages of samples that can be incorporated with non-Gaussian noise for a maximum of 3 o error and for

which convergence time is below 600sec are only considered. 

The noise samples are considered to occur in two different ways. One way of occurring noise samples is continuous, in

which a non-Gaussian noise sample is assumed to be occurring at every 3 rd sample or 4 th sample, and so on. Another way

of occurring noise samples is random, in which a non-Gaussian noise sample is assumed to be occurring randomly. The

percentage of non-Gaussian noise samples is taken as the proportion of non-Gaussian noise samples to the total simulated

samples. If the non-Gaussian noise is assumed to occur at every 3 rd second, then the total non-Gaussian samples considered

during simulation will be 600 and the percentage of no-Gaussian samples will be 33.3. 

It can be concluded from Table 5 that UKF could take up to 47.2 percent, 27.7 percent, and 4.4 percent of measurements

with SN for low, medium, and high ATB scenarios respectively, when the noise observations are known to arise sponta-

neously.Similarly, for low, medium, and high ATB scenarios, it can survive up to 61 percent, 38.8 percent, and 5.5 percent of

random GMN samples.So, from the simulation, it is evident that UKF has better stability than EKF.From the simulation find-

ings, it was found that UKF operates well with both forms of noise whereas EKF just functions within certain limits.When

noise continues to increase, the EKF algorithm becomes extremely unstable.It is therefore difficult to establish the percent-

age of samples EKF may sustain. As the ATB increases, the target moves away from the observer, hence the percentage of

samples that the UKF algorithm can tolerate decreases as the range increases. Nevertheless, the UKF shows consistent results

for fewer noise ranges than the EKF. 

4. Conclusion 

In the investigaton to evaluate the filters with two separate non-Gaussian noise conditions namely SN and GMN. The

results show the efficiency of UKF and EKF in providing accurate solutions when different kinds of noises are present.(clarity

of performance of UKF and EKF missing). It was found, from the simulation results, that UKF performs well with both forms

of noise for low and medium ATB scenarios while with high ATB scenarios the efficacy is poor as the range increases.The

findings show that UKF will take up to 33 percentfor low ATB scenarios, 27 percent for medium ATB scenarios, and 3.5

percent of samples for high ATB scenarios with SN. Similarly, with GMN samples,it can tolerate up to 50 percent, 38 percent,

and 4 percent of samples for low, medium, and high ATB situations. On the other side, EKF rarely operates within certain

limits and is highly unpredictable. Even for a lesser percentage of non-Gaussian samples, the solution was not obtained with

EKF for many scenarios. Nonetheless, UKF shows consistent results with smaller noise tests than EKF. 
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