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Abstract—This Surveillance plays a critical role in the 
marine environment. Target is tracked even if measurements of 
the range are not available, using bearing and elevation 
measurements. This research intends to track the target and 
estimate the parameters of target motion and to reduce noise in 
the estimated parameters using an effective nonlinear filter,
Unscented Angles-only Kalman Filter (UAKF). Mathematical 
modeling is presented in this research, and simulation is done 
using MATLAB software. The performance of the UAKF 
algorithm is shown to be efficient in tracking the target and 
observer maneuver is recommended to get convergence very 
quickly in underwater surroundings.

Keywords—Underwater 3d target tracking, estimation theory, 
Unscented Angles-only Kalman filter

I. INTRODUCTION 

Passive target tracking is usually followed in underwater 
to track a target submarine [1,2]. Tracking is a complicated 
procedure of estimating the state (i.e., location, velocity) of 
moving targets, as close as possible to the true state by 
utilizing the measurements obtained from different sensors. It 
is assumed that observer submarine travels at low speed to 
eliminate self-noise for target tracking. In this paper, research 
is towards submarine (observer) tracking a target submarine, 
utilizing elevation and bearing measurements. The results 
obtained are compared for each scenario with and without 
observer maneuver [2].

Fig.1. Block diagram for tracking a target in passive mode using bearing 
and elevation measurements.

It is assumed that only angle measurements are available.
So, the procedure is highly nonlinear, and therefore Unscented
Angles-only Kalman filter (UAKF), which is a suboptimal 
nonlinear filter [3-6], is examined for this application. The 
above process in the form of a block diagram is as shown in 

Fig.1. The estimated parameters of the target i.e., range,
course, bearing, elevation, and speed (R, C, B, E, S) are 
utilized in the guidance algorithm used forlaunching of 
weapons on to the target [7-10].

Fig.2 a. Observer without Maneuver

Fig.2 b. Observer S- Maneuver
Fig.2. An observer with maneuver and without maneuver 

Fig 2 a. shows observer tracking a target without 

maneuver. A line joining the observer and target is called the 
line of sight. Observer submarine tracks the target based on 
the noise signal generated which is received at the observer 
and without changing the observer course angle. Fig 2 b 
shows, the S-maneuver carried out by observer for better 
observability of target. Observer and target are presumed to be 
in the same three-dimensional plane. Target and observer are 
assumed to move with constant speed. Initially, observer 
travels in the first leg for 2 minutes at 90o course and turns 
with a turn rate of 0.5o per second towards the 270o course.
After 4 minutes of travel, it turns towards 90o of course in the 
second leg. Similarly, second, third, and fourth legs are 
repeated except in the third leg, observer course is 270o and in 
the fourth leg, it is 90o [2].
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Section II deals with the modeling of the state vector, 
measurements, and UAKF. In section III, the generation of 
measurements and selected scenario results are discussed. 
Section IV gives the summary and conclusions on the 
performance of the algorithm.

II. MATHEMATICAL MODELING

A. System and measurement models
The target state vector ௌܺ(ܽ)ܺ௦(ܽ) = (ܽ)ݔ̇] (̇ܽ)ݕ̇ (ܽ)ݖ̇ (ܽ)ݔܴ (ܽ)ݕܴ [(ܽ)ݖܴ

(1)ܺ௦(ܽ + 1) = ∅௦ܺ௦(ܽ) + ܾ(ܽ + 1) + ωߴ(ܽ) (2)

where Ø= transition matrix

∅ = ⎣⎢⎢⎢
⎢⎡1 0 0 0 0 00 1 0 0 0 00ݐ00

0ݐ00
ݐ100

0100
0 00 01 00 1⎦⎥⎥⎥

⎥⎤
(3)

ω = ⎣⎢⎢
⎢⎡ ଶݐ00ݐ 2⁄00

ଶݐ00ݐ0 2⁄0
ଶݐ00ݐ00 2⁄ ⎦⎥⎥

⎥⎤
(4)

ܾ(ܽ + 1) =
⎣⎢⎢
⎢⎢⎡

(ܽ)ݔ−)000 + ܽ)ݔ + (ܽ)ݕ−)((1 + ܽ)ݕ + (ܽ)ݖ−)((1 + ܽ)ݖ + 1))⎦⎥⎥
⎥⎥⎤

்
(5)

(ܽ)ߴ = ቎ߴ௫ߴߴ௬௭ ቏ (6)

Here, ߴ(ܽ)is plant noise assumed to be white Gaussian. ௦ݐ is 
time interval. The covariance of the plant noise is calculated 
as follows. [(ܽ)ω்(ܽ)்ߴ(ܽ)ߴ(ܽ)ω]ܧ = ௜௝ߜܳ (7)

Where ܳ is 

ܳ =
⎣⎢⎢
⎢⎢⎢
⎡ ௦ଶݐ 0 ௦ଷݐ 2⁄ 0 0 00 ௦ଶݐ 0 0 ௦ଷݐ 2⁄ 00 0 ௦ଶݐ 0 0 ௦ଷݐ ௦ଷݐ⁄2 2⁄ 0 0 ௦ସݐ 4⁄ 0 00 ௦ଷݐ 2⁄ 0 0 ௦ସݐ 4⁄ 00 0 ௦ଷݐ 2⁄ 0 0 ௦ସݐ 4⁄ ⎦⎥⎥

⎥⎥⎥
⎤

(8)

௜௝ߜ = ణ       ଶߪ If   i=j= 0             Otherwise

The bearing and elevation measurements, corrupted with 
noise, are measured with respect to true north.Β௠(ܽ + 1) = ଵି݊ܽݐ ቀ(௫೟ି௫బ)(௬೟ି௬బ)ቁ + (ܽ)௕ߟ ܽ)௠ܧ(9) + 1) = ଵି݊ܽݐ ቀ (ோೣ೤)(௭೟ି௭బቁ + (ܽ)௘ߟ (10)

Where ܴ௫௬ = ඥ(ݔ௧ − ଴)ଶݔ + ௧ݕ) − ଴)ଶݕ (11)

B. Unscented Transformation Algorithm
Consider a random variable (ݔ) . To calculate the 

statistical properties of  Unscented Transformation (UT) is ,ݔ
a straight-forward method, when it is moved through a 
nonlinear transformation. Consider a nonlinear function 
which is assumed asݕ =  To calculate the mean and .(ݔ)݃
covariance ofݕ, a matrix, ߯ of 2ܮ + 1 sigma vector is formed.
The flow of the algorithm is shown in Fig 3.߯଴ = ݔ̅ ݔ̅(12) is mean of random variable߯௜ = ݔ̅  ± ൫ඥ(ܮ + (ߣ ௫ܲ൯௜݅ = 1 … , .ܮ (13)

L is the dimension, ௫ܲ is the covarianceܹݐ଴(௠) = ܮ)/ߣ + (ߣ ଴(௖)ݐ଴(௠)is the initial target state vector weightܹݐܹ(14) = ఒ௅ାఒ + (1 − ଶߙ + (ߚ ଴(௖)ݐܹ(15) is an initial state covariance matrix weight ܹݐ௜(௠) = ௐ௧ೝ(೎){ଶ(௅ାఒ)} ݅ = 1 … , ܮ ௜(௠)ݐܹ(16) is the state vector sigma point weight ܹݐ௜(௖) is the state sigma covariance matrix weight 

Where   ߣ = ܮ)ଶߙ + (ܦ − ܮ and ߙ determines the sigma 
point around mean ݔ̅ . ,ܦ ߚ are mostly selected as zero and 
two. 

The vectors ߯௜ are as follows,ݕ௜ = ݃1(߯௜)݅ = 1, … ܮ2, (17)

The mean and covariance ݕ ݂݋௜ are given by ݕത ≈ ∑ ௜(௠)ଶ௅௜ୀ଴ݐ௜ܹݕ  (18)

௬ܲ ≈ ∑ ௜ݕ} ௜(௖)ݐܹ − ത௜}ଶଶ௅௜ୀ଴ݕ
UAKF is a simple expansion of the Unscented Transform

to the recursive estimation. 

The procedure shows the typical UAKF implementation 
as follows.

C. Unscented Kalman Filter [7-10]
1. By using initial conditions of state vector first compute 

the sigma pointsܺ(ܽ) = [ܺ௦(ܽ) ܺ௦(ܽ) ± ඥ(ܮ + [(ܽ)݌(ߣ (19)

2. Then transform sigma points [10].

3. The following shows predicted state vector and the 
covariance matrix ܺ௦(ܽ + 1|ܽ) =  ∑ ܹ݁௜(௖)ଶ௅௜ୀ଴ [−ܺ௦(ܽ + 1|ܽ) +ܺ௦(݅, ܽ + 1|ܽ)]ଶ + ܳ(ܽ) (20)

4. The update state vectors sigma point is
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ܺ௦(ܽ + 1|ܽ) =
൦ ܺ௦(ܽ + 1|ܽ)ܺ௦(ܽ + 1|ܽ) + ඥ(ܮ + ܽ)݌(ߣ + 1|ܽ)ܺ௦(ܽ + 1|ܽ) − ඥ(ܮ + ܽ)݌(ߣ + 1|ܽ)൪ (21)

Fig.3. The flow of UAKF algorithm

5. Predicted vector points of the state are transformed via
the measurement model. Then measurement prediction 
is 

௦ܻ(ܽ + 1|ܽ) = ∑ ܽ)ܻ௜(௠)ݐܹ + 1|ܽ)ଶ௅௜ୀ଴ (22)

Where ܻ(ܽ + 1|ܽ) = ℎ(ܺ௦(ܽ + 1)) (23)

6. The noise measurement is assumed to be additive and 
independent; cross-covariance is

௬ܲ௬ = ∑ ,݅)ܻ]௥(௖)ݐܹ ܽ + 1|ܽ) − ௦ܻ(ܽ + 1|ܽ)]ଶଶ௅௜ୀ଴ +ܴ(ܽ) (24)

௫ܲ௬ = ∑ ,݅)ܺ]௜(௖)ݐܹ ܽ + 1|ܽ) −ଶ௅௜ୀ଴ܺ௦(ܽ + 1|ܽ)][ܻ(݅, ܽ + 1|ܽ) − ௦ܻ(ܽ + 1|ܽ)]் (25)

7. Kalman Gain is (G)G(ܽ + 1) = P௫௬ ௬ܲ௬ିଵ (26)

8. The estimated state vector isܺ(ܽ + 1|ܽ + 1) = ܺ(ܽ + 1|ܽ) + G(ܽ +1)(ܻ(ܽ + 1|ܽ + 1) − ܻ(ܽ + 1|ܽ)) (27)

9. The estimated error covariance isܲ(ܽ + 1|ܽ + 1) = ܲ(ܽ + 1|ܽ) − G(ܽ + 1) ௬ܲ௬G(ܽ)்
(28)

III. SIMULATION RESULTS

The target state vector's introductory estimate for 
implementation of the algorithm is taken as:

ܺ௦(0,0) =
⎣⎢⎢
⎢⎢⎡

1114000 ∗ sin(ܧ௠) ∗ cos(߀௠)4000 ∗ sin(ܧ௠) ∗ 4000(௠߀)ݏ݋ܿ ∗ sin (ܧ௠) ⎦⎥⎥
⎥⎥⎤

்
(29)

Based on the sonar range of the day, the target’s 
introductory position is calculated, and it is assumed as 
4000m. The prediction of velocity components of the target is 
difficult as only angle measurements are available. So, they 
are each assumed as 1m/s. The initial state covariance matrix 
can be represented as a diagonal matrix if the initial state 
estimate is uniformly distributed and given as:ܲ(0,0) = ݈݋݊݃ܽ݅݀ ൤6 ∗ (ܺ௦(0,0))ଶ 12ൗ ൨ (30)

TABLE1: SCENARIOS CHOSEN TO EVALUATE THE PERFORMANCE 

TR- Target Range TB- Target Bearing TE- Target 
Elevation TS-Target Speed TP-Target Pitch TC-Target 
Course OS-Observer Speed

The experiment is conducted under favorable
environmental conditions and hence the angle measurements 
are presumed to be available continuously. By using 
MATLAB in the PC (Personal Computer) environment, 
simulation is carried out. The scenarios that are selected for 
the performance of the algorithm are as shown in Table 1. For 
example, scenario1 defines a target moving with an initial
bearing of 45°, course and speed of 255° and 10 m/s 
respectively. The elevation angle is 135°. The measurements 
of bearing and elevation are corrupted with 0.33°(1sigma) and 
0.33°(1sigma) respectively.

TABLE 2. CONVERGENCE TIME FOR ALL SCENARIOS FOR UAKF

Sc.no.
UAKF without observer 

maneuver
UAKF with observer 

maneuver
Range Course Speed Range Course Speed

1 23 29 32 25 99 32

2 NC NC NC 188 167 191

3 NC 117 NC 293 115 288

4 NC NC NC 260 279 241

True values and estimates are available in simulation 
mode, and therefore the validity of the solution is possible on 
the basis of certain acceptance criteria. The acceptance 
criterion is given as:

Course error <= 3° 

Speed error <= 5 m/s and 

Range error <= 8% of actual range 

Sc 
no

TR
(m)

TB
(deg)

TC 
(deg)

TE
(deg)

TS 
(m/s)

TP 
(deg)

OS 
(m/s)

1 3000 45 225 45 10 110 7.8

2 3000 0 270 135 12 60.5 12

3 3000 45 270 135 10 45 5

4 3000 135 45 135 12 135 12

Initial sigma 
points, state 
estimate and 

error 
covariance

Compute 
Kalman Gain

Update 
Estimate State 

vector

Update estimated 
state vector and 

covariance

Project the state ahead
Project covariance ahead

Measurements
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Fig.4. TMA block diagram in simulation mode

Block diagram of target motion analysis in simulation 
mode is shown in Fig 4. The target motion parameters (TMP) 
are estimated by corrupted measurements using UAKF. The 
estimated TMP are compared with that of true values. For 
scenario 1, Fig 5 presents the observer path without maneuver, 
tracking the target path. Errors in estimated range, course, and 
speed are shown in Fig 6 to Fig 8respectively, and numerical 
results are shown in Table 2. Similarly, Fig 9 shows the target 
and observer path where the estimated path does not keep on 
track with the true target path and from Fig 10, 11, 12, it can 
be observed that error in range, course, and speed is very high 
and the error is not within the acceptance criteria for scenario 
2 respectively. Fig 13 shows the observer and target path with 
observer following S- maneuver for the same scenario 2. Fig 
14, 15, 16 shows errors in range, course, and speed 
respectively.

In the simulation, for scenario1, it is observed that the 
range error, course error, and speed error are converged at 
23rdsecond, 29thsecond, and 32ndsecond without observer 
maneuver, whereas, for scenario 2 the solution is not obtained 
for range, course, and speed. So, for the same scenario 2, 
observer maneuver is recommended, and the solution is 
converged at 188thsecond, 167thsecond, and 191stsecond for 
range, course, and speed respectively. At 191stsecond, the total 
solution is converged. Similarly, in table 2 the convergence 
times for other scenarios are shown. 

Observer and target movements can be clearly seen from 
Fig 5, Fig 9, and Fig 13. In Fig 5 true and estimated paths of a
target are the same that means without observer maneuver 
recommendation target is tracked by the observer for scenario 
1 and errors are also within the acceptance criteria. Similarly, 
figure 9 shows that the true target path is not estimated by the 
observer, and the estimated path error for scenario 2 is also 
very high. So, for this problem, to track the target, the observer 
performs S- maneuver for the same scenario 2. Fig 13 shows
the estimated and true target path with observer S-maneuver 
and errors in estimates of target parameters are also within the 
acceptance criteria and the solution is converged. The 
convergence times for all scenarios are shown in Table 2.

Fig.5. Observer and target path without observer maneuver for scenario 1

Fig. 6. Error in the estimated range 

Fig.7. Error in estimated course 

Estimated range, 
bearing, elevation, 
course, speed and 

pitch with time

Corrupted bearing and 
elevation measurements 

with time

Simulator UAKF

Performance 
Analysis

Inputs: True target motion parameters, 
Noise in bearing and elevation
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Fig.8. Error in estimated speed 

Fig.9. Observer and target path, without observer maneuver for
scenario 2 

Fig.10.Error in the estimated range 

Fig.11.Error in estimated course 

Fig.12. Error in estimated speed 

Fig.13.Observer and target path with observer following S-maneuver 
for scenario 2

214



Fig.14.Error in the estimated range 

Fig.15.Error in estimated course 

Fig.16.Error in estimated speed 

IV. CONCLUSION

With the increasing interest in marine research, tracking 
undersea target technology has aroused to full attention. 
Acoustic waves have become the most useful signals for 
tracking underwater targets, due to the precision and 
difficulty of the marine environment. In this paper, for better 
results and less convergence time, observer maneuver is 
recommended to track the target and UAKF nonlinear 
filtering algorithm with observer S-maneuver is suitable for 
passive target tracking and when elevation measurements are 
also available along with bearing measurements. For better 
observability of target, observer has to maneuver and get the 
solution with less convergence of time when compare to 
without observer maneuver.
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