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Abstract—Unscented Kalman filter is applied for tracking of 
a 3-dimensional autonomous aerial target.   The noise corrupted 
measurements are smoothed and at the same time the vehicle’s 
velocity components are found out. Detailed study is carried out 
in Monte-Carlo simulation. The outputs of the algorithm are 
compare with that of extended Kalman filter and are useful for 
releasing weapon on to the target.
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I. INTRODUCTION

Autonomous Aerial Vehicle (AAV) is the world's most 
reliable airborne warfare system today. AAV is an on-board 
computer controlled and piloted robotic system that can be 
maneuvered in 3-dimensions [1-2]. AAV, under the most 
environmental situation, has access to follow pre-programmed 
path wherever and whenever needed. It transmits radio 
frequency signals to track the target vehicle factors like range, 
azimuth bearing and elevation. Recent AAVs have satellite-
based transmissions systems offering the capability to check 
and redirect AAV assignments worldwide from a ship or from 
helicopter [2-3]. Due to this reason, semi-autonomous 
procedures are advantageous over fully autonomous 
processes. Weapon release system can be a ship on the water 
surface or a helicopter or an aircraft in air. AAV Data obtained 
is transmitted to weapon release system through GPS such that 
weapon release system will be capable to know the status and 
movement of target and emits weapon in that course. Tracking 
of target is conducted using Unscented Kalman filter (UKF)
[4-5]. Target movement parameters specifically at extended 
distances are nonlinear. So, UKF is thought built on quickly 
convergent and unbiased filter challenges in extended Kalman 
filter and Kalman filter [6-8].

The movement of target is a non-linear process as the 
relation of azimuth angle and elevation measurements with the 
state of target vector is nonlinear [7-8]. Hence the optimal 
Kalman filter [9-10] is not proposed. Extended Kalman Filter
(EKF) is a suboptimal nonlinear filter that operates by 
linearizing the nonlinearities of the system. Linearization of 
the nonlinearities results in loss of information while 
estimating the target parameters. The target moves at constant 
course, pitch and speed. The noise of the process is considered 
to be white Gaussian.

Mathematical modelling of UKF and EKF algorithms with 
simulator is given in Section II. Section III deals about the 
simulation results are elaborated in Section III and then 
concluded in section IV.

II. MATHEMATICAL MODELLING

First, consider state vector:

XS(j)=
⎣⎢⎢
⎢⎢⎢
⎡ ⎥⎥⎦௫(ℊ)ܴ௬(ℊ)ܴ௭(ℊ)ܴ(ℊ)ݖ̇(ℊ)ݕ̇(ℊ)ݔ̇

⎥⎥⎥
⎤

(1)

Here ,(ℊ)ݔ̇ ,(ℊ)ݕ̇ (ℊ)ݖ̇ are ℊ target velocity components 
and  ܴ௫(ℊ), ܴ௬(ℊ), ܴ௭(ℊ) are target range elements in x, y 
and z directions respectively [7-10]. The state vector up-
dation becomes:ܺ௦(ℊ + 1) =  ܺ௦(ℊ)Ø + ܾ(ℊ + 1) + (ℊ)ݓ߁ (2)Ø is given by:

Ø = ⎣⎢⎢
⎢⎢⎡1 0 0 0 0 00 1 0 0 0 00 0 1 0 0 ݐ0 0 0 1 0 00 ݐ 0 0 1 00 0 ݐ 0 0 1⎦⎥⎥

⎥⎥⎤ (3)

The time interval at which measurements are collected is ݐ. The determinist control matrix is ܾ(ℊ + 1), given by:

ܾ(ℊ + 1) =
⎣⎢⎢
⎢⎢⎢
⎡ 000−൫ݔ଴ (ℊ + 1) − ଴ (ℊݕ଴(ℊ)൯−൫ݔ + 1) − ଴ (ℊݖ଴(ℊ)൯−൫ݕ + ଴(ℊ)൯ݖ−(1 ⎦⎥⎥

⎥⎥⎥
⎤்

(4)

Here ݔ଴(ℊ),  ଴ (ℊ)  are components ofݖ ݀݊ܽ ଴ (ℊ)ݕ
observer location in x, y and z directions respectively. To 
diminish the mathematical complication, true North 
convention is followed by all angles. Let ݓ(ℊ)  be plant 
noise. (ℊ)ݓ = ௫ݓ]  ௬ݓ ்[௭ݓ (5)

Variance of ݓ(ℊ) is given by:ܧ[ ߁(ℊ)ݓ(ℊ)்ݓ(ℊ)்߁(ℊ)] =  ௜ܵ௝ (6)

Where ௜௝ߜ = ௪ଶߪ (݅ = ݆) (7)

= 0 otherwise
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ܵ =
⎣⎢⎢
⎢⎢⎢
⎡ ଶݏݐ 0 0 ଷݏݐ 2⁄ 0 00 ଶݏݐ 0 0 ଷݏݐ 2⁄ 00 0 ଶݏݐ 0 0 ଷݏݐ ଷݏݐ⁄2 2⁄ 0 0 ଷݏݐ 4⁄ 0 00 ଶݏݐ 2⁄ 0 0 ଷݏݐ 4⁄ 00 0 ଶݏݐ 2⁄ 0 0 ଷݏݐ 4⁄ ⎦⎥⎥

⎥⎥⎥
⎤

(8)

Γ(ℊ) =
⎣⎢⎢
⎢⎢⎡

ݐ 0 00 ݐ 00 0 ଶݐݐ 2⁄ 0 00 ଶݐ 2⁄ 00 0 ଶݐ 2⁄ ⎦⎥⎥
⎥⎥⎤ (9)

ܼ(ℊ) is the measurement matrix and is given by:ܼ(ℊ) = [ܴ௠(ℊ) ௠(ℊ)ܤ Ө௠(ℊ)]் (10)

Here ܴ௠(ℊ), ௠(ℊ)ܤ  and Ө௠(ℊ) are measured range, 
bearing and elevation.ܴ௠(ℊ) = ܴ(ℊ) + ோ(ℊ)ߦ ௠(ℊ)ܤ(11) = (ℊ)ܤ + ஻(ℊ)ߦ (12)Ө௠(ℊ) = Ө(ℊ) + Ө(ℊ)ߦ (13)

where ܴ(ℊ), (ℊ)ܤ and ܧ(ℊ) are true range, true bearing 
and true elevation.ܴ(ℊ) = ටܴ௫ଶ(ℊ) + ܴ௬ଶ(ℊ) + ܴ௓ଶ(ℊ) (ℊ)ܤ(14) = ଵ൫ܴ௫(ℊ)ି݊ܽݐ ܴ௬(ℊ)⁄ ൯ (15)Ө(ℊ) = ଵ൫ܴ௫௬(ℊ)ି݊ܽݐ  ܴ௓(ℊ)⁄ ൯ (16)

Where  ܴ௫௬ =  ඥܴ௫ଶ + ܴ௬ଶ (17)

Measurement vector is given byܼ(ℊ) = ௦(ℊ)ܺ(ℊ)ܪ + (ℊ)ߦ  (ℊ)ܪ(18) =
⎣⎢⎢
⎢⎡0 0 0 sin൫ܤ෠൯ sin൫Ө෡൯ sin൫Ө෡൯ cos൫ܤ෠൯ cos൫Ө෡൯0 0 0 cos൫ܤ෠൯ ܴ௫௬൘ −sin൫ܤ෠൯ ܴ௫௬൘ 00 0 0 sin൫ܤ෠൯ cos൫Ө෡൯൘ܴ cos൫Ө෡൯ cos൫ܤ෠൯൘ܴ − sin൫Ө෡൯൘ܴ ⎦⎥⎥

⎥⎤
(ℊ)ߦ(19) = ோߦ ] ஻ߦ ்[ Өߦ (20)

The unscented Kalman filter is a combination of classical 
filter and an unscented transformation, which is made in order 
to transmit transformation in the model through a non-linear 
process. UKF gives adequately precise solution.

An easy method is adapted to evaluate the statistical 
properties of a random variable, which endures a non-linear 
transformation is called an unscented transformation. 
Suppose a random variable ݔ, having an expected value ̄ݔ,
covariance ௫ܲ and dimension Λ , imparting through ݕ .(ݔ)݃= 2Λ + 1 sigma vectors are used to compute statistics of ݕ as follows:߯଴ = ௔߯ݔ̅ = ݔ̅ + ቀඥ(Λ + (ߣ + ௫ܲቁ௔ ܽ = 1,2, … … , Λ

߯௔ = ݔ̅ − ቀඥ(Λ + (ߣ + ௫ܲቁ௔ିஃ ܽ = Λ + 1, … … ,2Λ
଴ܹ(௠) = ߣ (Λ + ⁄(ߣ (21)

଴ܹ(௖) = ߣ (Λ + (ߣ + (1 − ଶߙ + ⁄(ߚ
௔ܹ(௠) = ௔ܹ(௖) = 1 ൫2(Λ + ⁄൯(ߣ         ܽ = 1,2, … ,2Λ

Here ߣ = ଶ(Λߙ + (ߢ − Λ is a parameter for scaling. ߙ is 
chosen to be small definite positive value, say 0.001, and 
defines how the sigma values are distributed over the mean.ߢ, a tuning parameter is chosen as zero. ߚ integrates earlier 
information of the distribution of ݔ (for Gaussian density 
function, ߚ = 2 is the best fit). ݅௧௛ row of the matrix root is 
represented as ൫ඥ(Λ + (ߣ + ௫ܲ൯௔ . ଴ܹ(௠) , ଴ܹ(௖) , ܹ(௠) and ܹ(௖) characterizes the weights of primed target vector, its
covariance, sigma point matrix and its covariance matrix 
respectively [7-10]. Equation (22) represents the non-linear 
function utilised to propagate sigma vectorsݕ௔ = ݃(߯௔)            ܽ = 1,2, … . ,2Λ (22)

The weighted posterior sigma points mean, and 
covariance are utilised to predict the covariance and mean of ݔ [13]. തݕ ≈ ∑ ௔ܹ(௠)ݕ௔ଶஃ௔ୀ଴ (23)

௬ܲ ≈ ∑ ௔ܹ(௖){ݕ௔ − ௔ݕ}{ത௔ݕ − ത௔}்ଶஃ௔ୀ଴ݕ (24)

UKF implementation is as follows.

(1). Let Λ be the vector of target state dimensions. (2Λ +1) state vectors are computed using sigma points from 
the initial points

ܺ(ℊ) = ൦ ܺ௦(ℊ)ܺ௦(ℊ) + ඥ(Λ + (ߣ + ܲ(ℊ)ܺ௦(ℊ) − ඥ(Λ + (ߣ + ܲ(ℊ)൪்
(25)

(2). Based on the process model (2), transform the sigma 
points. 

(3). The estimate of the predicted state at the time (݉ +1) of ݉ observations is given asܺ௦(ℊ + 1) = ∑ ௔ܹ(௠)ܺ௦൫ܽ, (ℊ + 1)൯ଶ௡௔ୀ଴ (26)

(4). Considering additive and independent process noise, 
the estimated covariance matrix is taken as:ܲ(ℊ + 1) = ∑ ௔ܹ(௖)ൣ−ܺ௦(ℊ + 1) + ܺ௦൫ܽ, (ℊ +ଶ௡௔ୀ଴1)൯൧ൣ−ܺ௦(ℊ + 1) + ܺ௦൫ܽ, (ℊ + 1)൯൧் + ܳ(ℊ) (27)

(5). The sigma points are modified using the average and 
the covariance predicted as follows

ܺ(ℊ + 1) = ൦ ܺ௦(ℊ + 1)ܺ௦(ℊ + 1) + ඥ(Λ + (ߣ + ܲ(ℊ + 1)ܺ௦(ℊ + 1) − ඥ(Λ + (ߣ + ܲ(ℊ + 1)൪்
(28)

(6). based on the measurement model given in (16),
transform the expected sigma points. The matrix of 
estimated measurements is ̂ݖ(ℊ + 1) = ∑ ௔ܹ(௠)ܻ(ℊ + 1)ଶஃ௔ୀ଴ (29)ܻ(݉ + 1) = ℎ൫ܺ௦(ℊ + 1)൯ (30)
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(7). The matrix of covariances for innovation is 
determined as 

௬ܲ௬ = ∑ ௔ܹ(௖)ൣ−̂ݖ(ℊ + 1) + ܻ൫ܽ, (ℊ +ଶஃ௔ୀ଴1)൯൧ ℊ)ݖ̂−ൣ + 1) + ܻ൫ܽ, (ℊ + 1)൯൧் + ஻ଶ(ℊ)ߪ (31)

(8). The cross-covariance matrix is calculated as

௫ܲ௬ = ∑ ௔ܹ(௖)ൣ−ܺ௦(ℊ + 1)+ܺ௦൫ܽ, (ℊ +ଶஃ௔ୀ଴1)൯൧ ൣ−ܺ௦(ℊ + 1) + ܺ௦൫ܽ, (ℊ + 1)൯൧்
(32)

(9). Kalman gain is calculated asܩ(ℊ + 1) = ௫ܲ௬ ௬ܲ௬ିଵ (33)

(10). The estimated state is calculated asܺ(ℊ + 1) = ൫̂ݖ(ℊ + 1) − ℊ)ݖ̂ + 1)൯ ∗ (ܺ(ℊ + 1) ℊ)ܩ+ + 1)) (34)

where ݖ(ℊ + 1) is measurement vector matrix.

(11). The error in estimated covariance matrix isܲ(ℊ + 1) = ℊ)ܩ− + 1) ௬ܲ௬்ܩ(ℊ + 1) + ܲ(ℊ + 1)
(35).

Initial target state vector, target velocity components are 
computed using first and second measurement sets of range 
bearing and elevation measurements [7-10].

Let the opening position of observer and target be(ݔ଴, ,଴ݕ (଴ݖ and ,௧ݔ) ,௧ݕ (௧ݖ assuming that they travel with 
velocities ݒ௧ and ݒ଴ . After ݐ seconds, shift in observer 
position is given as follows݀ݔ଴ = ଴ݒ ∗ sin(ݎܿ݋) ∗ sin(݌݋ℎ) ∗ ݐ ଴ݕ݀(36) = ଴ݒ ∗ cos(ݎܿ݋) ∗ sin(݌݋ℎ) ∗ ݐ ଴ݖ݀(37) = ଴ݒ ∗ cos(݌݋ℎ) ∗ ݐ

Here ݌݋ℎ and ݎܿ݋ are observer pitch and observer course 
respectively. The modified location of observer is presented 
as follows. ଴ݔ = ଴ݔ + ଴ݔ݀ ଴ݕ(38) = ଴ݕ + ଴ݕ݀ ଴ݖ(39) = ଴ݖ + ଴ݖ݀ (40)

Correspondingly, as of Fig.1.ݔ௧ = ܴ௫௬ ∗ sin (ܤ) ௧ݕ(41) = ܴ௫௬ ∗ cos(ܤ) (42)

sin(Ө) =  ܴ௫௬/ܴ (43)

Substituting (43) in (41) and (42),ݔ௧ = ܴ ∗ sin(Ө) ∗ (ܤ)݊݅ݏ ௧ݕ(44) = ܴ ∗ sin(Ө) ∗ (ܤ)ݏ݋ܿ ௧ݖ(45) = ܴ ∗ (Ө)ݏ݋ܿ (46)

When the target is in motion with velocity ݒ௧, the target 
position changes after ݐ seconds, as shown in Fig.2. 

௧ݔ݀ = ௧ݒ ∗ sin(ݎܿݐ) ∗ sin(݌ݐℎ) ∗ ݐ (47)

௧ݕ݀ = ௧ݒ ∗ cos(ݎܿݐ) ∗ sin(݌ݐℎ) ∗ ݐ ௧ݖ݀(48) = ௧ݒ ∗ cos(݌ݐℎ) ∗ ݐ (49)

Here ݌ݐℎ  and ݎܿݐ  are target pitch and target course 
respectively.

The modified location of target is presented as follows.ݔ௧ = ௧ݔ + ௧ݔ݀ ௧ݕ(50) = ௧ݕ + ௧ݕ݀ ௧ݖ(51) = ௧ݖ + ௧ݖ݀ (52)

Computer-generated actual values of azimuth bearing,

 range and elevation are calculated as follows.݃݊݅ݎܾܽ݁ ݁ݑݎݐ = ௧ݔ))ଵି݊ܽݐ − (଴ݔ ௧ݕ) − ⁄(଴ݕ ݁݃݊ܽݎ ݁ݑݎݐ(53)  ( = ඥ(ݔ௧ − ଴)ଶݔ + ௧ݕ) − ଴)ଶݕ + ௧ݖ) −    ଴)ଶݖ
݊݋݅ݐܽݒ݈݁݁ ݁ݑݎݐ(54) = ଵ൫ܴ௫௬ି݊ܽݐ ௧ݖ − ⁄଴ݖ ൯ (55)  

Fig. 3 Target motion analysis block diagram in simulation mode

Fig. 1Positions of target and observer assumed 

Fig. 2 Velocity components of target and observer
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The block diagram for the simulation mode target motion 
analysis is shown in Fig.3. Using EKF, the corrupted 
observations are used to estimate target motion parameters 
(TMPs). Estimated TMPs are related to true values.

EKF Algorithm:
EKF implementation is as follows.

i). The initial state vector estimate and its covariance 
matrix estimate be taken as ܺ(0|0) and ܲ(0|0)
respectively.

ii). For the subsequent time, the state vector is calculated 
as  ܺ௦(ℊ + 1) in (2)

iii). State vector’s covariance matrix for the subsequent time
is given as follows.ܲ(ℊ + 1|ℊ) = ∅(ℊ + 1|ℊ)ܲ(ℊ)∅்(ℊ + 1|ℊ) + ܵ(ℊ + 1) (56)

iv). Gain of the EKF is considered as follows:ܩ(ℊ + 1) =  ܲ(ℊ + 1|ℊ)∅்(ℊ + 1|ℊ)[ܪ(ℊ +1)ܲ(ℊ + 1|ℊ) ்ܪ(ℊ + 1) + ܴ]ିଵ (57)
v). The state estimation and its error covariance:ܺ௦(ℊ + 1|(ℊ + 1)  =  ܺ௦ (ℊ + 1|ℊ)  + ℊ)ܩ  +1) [ܼ(ℊ + 1)  − መܼ(ℊ + 1)] (58)ܲ(ℊ + 1|ℊ + 1) = [1 − ℊ)ܩ + ℊ)ܪ(1 +1)ܲ(ℊ + 1|ℊ)] (59)
vi). For next iterationܺ௦(ℊ|ℊ) =  ܺ(ℊ + 1|ℊ + 1) (60)ܲ(ℊ|ℊ) =  ܲ(ℊ + 1|ℊ + 1) (61)

III. SIMULATION AND RESULTS

The experiment is believed to be performed in ideal 
conditions. This simulation process is carried out via Matlab 
on a workstation. The trajectory chosen for algorithm 
evaluation is showed in Table.1. Scenario 1, for instance, 
defines a target moving within an opening range of 3000 m, 
with bearing and elevations of 45o. Its initial course is 255o 

moving with a speed of 10m/s. The range observations are 
tarnished with 10m (1σ), elevation and bearing measurements 
with, 0.33o (1σ) each. 

TABLE I INPUT SCENARIOS CHOSEN FOR THE ALGORITHM

Parameter
Scenario
1 2

Target initial range (m) 3000 3000
Target initial bearing (deg) 45 135
Target initial course (deg) 255 315
Target initial speed (m/s) 10 8.5
Target initial Elevation (deg) 45 135
Bearing noise (1σ) (deg) 0.33 0.33
Range noise (1σ) (m) 10 10

Elevation angle noise (1 σ) (deg) 0.33 0.33

On the basis of weapon specification, an acceptance 
criterion is selected to sustain weapons (this issue is not 
discussed here) and is as follows. The solution is converged 
when inaccuracy in course <= 3o, inaccuracy in speed 
estimate <= 1m/s and inaccuracy in elevation estimate <= 1o. 
The target’s estimated and real paths are as shown in Fig.4 
and Fig.8 for scenario1 and 2 respectively. For clarity of the 
concepts, errors in predicted values of target speed, target 
course and target elevation for scenario1 are presented in Fig. 

5, 6 and 7 respectively. For scenario 2 errors in speed, course 
and elevation are presented in Fig.9, 10 and 11 respectively. 
The solution is said to be obtained when the errors in 
estimated course, speed and elevation of the target are subject 
to the acceptance criteria. Table.2 provides the solution 
convergence time obtained in seconds for all predicted target 
parameters of scenarios in Table.1. It can be perceived from 
Table 2 data that the estimated parameters, i.e., course, speed 
and elevation of the target are converged at 28th, 26th and 3rd 
second respectively for scenario1. So, the total convergence 
of the solution is said to be obtained after 28 seconds. 
Similarly, for scenario 2, the convergence times of target 
parameters are 13th, 25th and 3rd seconds respectively for the 
estimated course, speed and elevation. So, the total 
convergence time of solution for scenario 2 is obtained after 
25 seconds.

TABLE II CONVERGENCE TIME FOR THE CHOSEN SCENARIOS IN SECONDS

Parameter Course Speed Elevation Total solution
Scenario 1 2 1 2 1 2 1 2

EKF 31 25 28 30 3 3 31 28
UKF 28 13 25 25 3 3 28 25

 

Fig. 4 Simulated and estimated target paths for scenario 1

Fig. 5 Error in target speed estimate for scenario 1
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Fig. 6 Error in target course estimate for scenario 1

Fig.7. Error in target elevation estimate for scenario 1

Fig.8. Simulated and estimated target paths for scenario 2

Fig.9. Error in target speed estimate for scenario 2

Fig.10. Error in target course estimate for scenario 2

Fig.11. Error in target elevation estimate for scenario 2

From Table 2 it can be observed that the total convergence 
times of the solution is obtained earlier with UKF than EKF. 
As the tracking is carried out in active mode, the solution has 
to be obtained faster in order to take proper action on the 
target. It can also be observed from the figures that the error 
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in estimated parameters is more using EKF than UKF. 
Moreover, EKF fails in many scenarios with higher 
nonlinearity. So, UKF is preferred for the application.

IV. CONCLUSION

In this research, an attempt is made to track the target in 
3-D space using three different types of measurements. 
Unscented Kalman filter is preferred to predict target 
direction, speed in active target tracking from AAV systems. 
The results are obtained below 30 seconds. Hence, based on 
the results obtained during simulation UKF is suggested for 
active target tracking using AAV.

V. FUTURESCOPE

The research presented in this paper can be extended to 
maneuvering target tracking. The application can be explored 
with more nonlinear filtering algorithms like particle filter, 
shifted Rayleigh filter, ensemble Kalman filter, etc.
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