Emerging Trends in Computer Engineering

High-Dimensional Data Feature Subset Selection Using a
Clustering-Based Algorithm: An Effective Implementation

K.Divya Kalyani, S.Venkata Lakshmi, P.Mounika
Assistant Professor, Dadi Institute of Engineering and Technology
divyakalyanik@diet.edu.in, venkatalakshmisalapu@gmail.com
reddymounika010593@gmail.com

Abstract:

Feature selection involves identifying a subset of the most useful
features that produces compatible results as the original entire set
of features. A feature selection algorithm may be evaluated from
both the efficiency and effectiveness points of view. While the
efficiency concerns the time required to find a subset of features,
the effectiveness is related to the quality of the subset of features.
Based on these criteria, a fast clustering-based feature selection
algorithm (FAST) is proposed and experimentally evaluated in this
paper. The FAST algorithm works in two steps. In the first step,
features are divided into clusters by using graph-theoretic
clustering methods. In the second step, the most representative
feature that is strongly related to target classes is selected from
each cluster to form a subset of features. Features in different
clusters are relatively independent, the clustering-based strategy of
FAST has a high probability of producing a subset of useful and
independent features. To ensure the efficiency of FAST, we adopt
the efficient minimum-spanning tree (MST) clustering method. The
efficiency and effectiveness of the FAST algorithm are evaluated
through an empirical study. Extensive experiments are carried out
to compare FAST and several representative feature selection
algorithms, namely, FCBF, ReliefF, CFS, Consist, and FOCUS-SF,
with respect to four types of well-known classifiers, namely, the
probability-based Naive Bayes, the tree-based C4.5, the instance-
based IB1, and the rule-based RIPPER before and after feature
selection. The results, on 35 publicly available real-world high-
dimensional image, microarray, and text data, demonstrate that the
FAST not only produces smaller subsets of features but also
improves the performances of the four types of classifiers.

Introduction

With the aim of choosing a subset of good features with respect to
the target concepts, feature subset selection is an effective way for
reducing dimensionality, removing irrelevant data, increasing
learning accuracy, and improving result comprehensibility. Many
feature subset selection methods have been proposed and can be

80 | Responsibility of contents of this paper rests upon the authors and not upon the
editor & publisher



Emerging Trends in Computer Engineering

divided into four broad categories: the Embedded, Wrapper, Filter,
and Hybrid approaches.

The wrapper method are computationally expensive and tend to
over fit on small training sets. The filter methods,in addition to their
generality, are usually a good choice when the number of features is
very large. Thus, we will focus on the filter method in this paper.
With respect to the filter feature selection methods, the application
of cluster analysis has been demonstrated to be more effective than
traditional feature selection algorithms.

In cluster analysis, graph-theoretic methods have been well studied
and used in many applications. Their results have, sometimes, the
best agreement with human performance. The general graph-
theoretic clustering is simple: compute a neighborhood graph of
instances, then delete any edge in the graph that is much longer /
shorter (according to some criterion) than its neighbors. The result is
a forest and each tree in the forest represents a cluster. We apply
graph-theoretic clustering methods to features. In particular, we
adopt the minimum spanning tree (MST) based clustering
algorithms, because they do not assume that data points are
grouped around centers or separated by a regular geometric curve
and have been widely used in practice. Based on the MST method,
we propose a fast clustering based feature subset Selection algorithm
(FAST). The FAST algorithm works in two steps. In the first step,
features are divided into clusters by using graph-theoretic clustering
methods. In the second step, the most representative feature that is
strongly related to target classes is selected from each cluster to form
the final subset of features. Features in different clusters are
relatively independent; the clustering based strategy of FAST has a
high probability of producing a subset of useful and independent
features.

Proposed System

Feature subset selection can be viewed as the process of identifying
and removing as many irrelevant and redundant features as
possible. This is because irrelevant features do not contribute to the
predictive accuracy and redundant features do not redound to
getting a better predictor for that they provide mostly information
which is already present in other features. Of the many feature
subset selection algorithms, some can effectively eliminate irrelevant
features but fail to handle redundant features yet some of others can
eliminate the irrelevant while taking care of the redundant features.
Our proposed FAST algorithm falls into the second group.

81 | Responsibility of contents of this paper rests upon the authors and not upon the
editor & publisher



Emerging Trends in Computer Engineering

Traditionally, feature subset selection research has focused on
searching for relevant features. A well-known example is Relief which
weighs each feature according to its ability to discriminate instances
under different targets based on distance-based criteria function.
However, Relief is ineffective at removing redundant features as two
predictive but highly correlated features are likely both to be highly
weighted. Relief-F extends Relief, enabling this method to work with
noisy and incomplete data sets and to deal with multiclass problems,
but still cannot identify redundant features.

A. Advantages of Proposed System:

1. Good feature subsets contain features highly correlated with the
class, yet uncorrelated with each other.

2. The efficiently and effectively deal with both irrelevant and
redundant features, and obtain a good feature subset.

3. Generally all the six algorithms achieve significant reduction of
dimensionality by selecting only a small portion of the original
features.

4. The null hypothesis of the Friedman test is that all the feature
selection algorithms are equivalent in terms of runtime.

B. Methodologies:

Various generic software development life cycle methodologies are
available for executing software development projects. Although each
methodology is designed for a specific purpose and has its own
advantages and disadvantages, most methodologies divide the life
cycle into phases and share tasks across these phases. This section
briefly summarizes common methodologies used for software
development and describes their relationship to testing.

C. Waterfall Model:

The waterfall model is one of the earliest structured models for
software development. It consists of the following sequential phases
through which the development life cycle progresses:

System Feasibility: In this phase, you consider the various aspects of
the targeted business process, find out which aspects are worth
incorporating into a system, and evaluate various approaches to
building the required software.

Requirement Analysis: In this phase, you capture software
requirements in such a way that they can be translated into actual
use cases for the system. The requirements can derive from use
cases, performance goals, target deployment, and so on.

82 | Responsibility of contents of this paper rests upon the authors and not upon the
editor & publisher



Emerging Trends in Computer Engineering

System Design: In this phase, you identify the interacting
components that make up the system. You define the exposed
interfaces, the communication between the interfaces, key algorithms
used, and the sequence of interaction. An architecture and design
review is conducted at the end of this phase to ensure that the
design conforms to the previously defined requirements.

Coding and Unit Testing: In this phase, you write code for the
modules that make up the system. You also review the code and
individually test the functionality of each module.

Integration and System Testing: In this phase, you integrate all of the
modules in the system and test them as a single system for all of the
use cases, making sure that the modules meet the requirements.

Deployment and Maintenance: In this phase, you deploy the software
system in the production environment. You then correct any errors
that are identified in this phase, and add or modify functionality
based on the updated requirements.

D. Incremental or Iterative Development:

The incremental, or iterative, development model breaks the project
into small parts. Each part is subjected to multiple iterations of the
waterfall model. At the end of each iteration, a new module is
completed or an existing one is improved on, the module is
integrated into the structure, and the structure is then tested as a
whole. The main advantage of the iterative development model is that
corrective actions can be taken at the end of each iteration. The
corrective actions can be changes to the specification because of
incorrect interpretation of the requirements, changes to the
requirements themselves, and other design or code-related changes
based on the system testing conducted at the end of each cycle.

E. Prototyping Model:

The prototyping model assumes that you do not have clear
requirements at the beginning of the project. Often, customers have
a vague idea of the requirements in the form of objectives that they
want the system to address. With the prototyping model, you build a
simplified version of the system and seek feedback from the parties
who have a stake in the project. The next iteration incorporates the
feedback and improves on the requirements specification.

The prototyping model consists of the following steps:

83 | Responsibility of contents of this paper rests upon the authors and not upon the
editor & publisher



Emerging Trends in Computer Engineering

Capture Requirements: This step involves collecting the requirements
over a period of time as they become available.

Design the System: After capturing the requirements, a new design is
made or an existing one is modified to address the new
requirements.

Create or Modify The Prototype: A prototype is created or an existing
prototype is modified based on the design from the previous step.

Assess Based on Feedback: The prototype is sent to the stakeholders
for review. Based on their feedback, an impact analysis is conducted
for the requirements, the design, and the prototype. The role of
testing at this step is to ensure that customer feedback is
incorporated in the next version of the prototype.

Refine The Prototype: The prototype is refined based on the impact
analysis conducted in the previous step.

Implement The System: After the requirements are understood, the
system is rewritten either from scratch or by reusing the prototypes.
The testing effort consists of the following:

* Ensuring that the system meets the refined requirements

» Code review

* Unit testing

* System testing

Conclusion

We have presented a novel clustering- based feature subset selection
algorithm for high dimensional data. The algorithm involves
removing irrelevant features, constructing a minimum spanning tree
from relative ones, and partitioning the MST and selecting
representative features. In this algorithm, a cluster consists of
features. Each cluster is treated as a single feature and thus
dimensionality is drastically reduced. The result is a forest and each
tree in the forest represents a cluster.

We apply graph-theoretic clustering methods to features. The most
representative feature that is strongly related to target classes is
selected from each cluster to form the final subset of features.
Features in different clusters are relatively independent; the
clustering based strategy of FAST has a high probability of producing
a subset of useful and independent features.

84 | Responsibility of contents of this paper rests upon the authors and not upon the
editor & publisher



Emerging Trends in Computer Engineering

References

[1]. H. Almuallim and T.G. Dietterich, “Algorithms for Identifying
Relevant Features,” Proc. Ninth Canadian Conf. Artificial Intelligence,
pp. 38-45, 1992.

[2]. J. Biesiada and W. Duch, “Features Election for High-
Dimensional data a Pearson Redundancy Based Filter,” Advances in
Soft Computing, vol. 435, pp. 242-249, 2008.

[3]. L. Yu and H. Liu, “Feature Selection for High-Dimensional Data:
A Fast Correlation- Based Filter Solution,” Proc. 20th Int’l Conf.
Machine Leaning, vol. 20, no. 2, pp. 856-863, 2003.

[4]. L. Yu and H. Liu, “Efficiently Handling Feature Redundancy in
High-Dimensional Data,” Proc. Ninth ACM SIGKDD Intl Conf.
Knowledge Discovery and Data Mining (KDD ’03), pp. 685-690, 2003.
[5]. J. Demsar, “Statistical Comparison of Classifiers over Multiple
Data Sets,” J. Machine Learning Res., vol. 7, pp. 1-30, 2006.

85 | Responsibility of contents of this paper rests upon the authors and not upon the
editor & publisher



