II B. Tech I Semester Regular Examinations, March – 2014
CONSTRUCTION MATERIALS AND MANAGEMENT
(Civil Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions
All Questions carry Equal Marks

1. Discuss the geological classification of rocks. (15M)

2. a) Explain about Flemish bond with neat sketches.
b) What is seasoning of timbers and why is it done? (7M+8M)

3. a) Explain the process of manufacturing fat lime?
b) Enumerate the laboratory tests for cement and describe any two of them. (8M+7M)

4. a) Write about i) types of arches ii) varnishes
b) Discuss the reasons for the causes of defects in painting work. (8M+7M)

5. Write short notes on:
i) Effect of moisture on aggregates
ii) Properties of good coarse aggregate
iii) Fineness modulus
iv) Alkali-aggregate reaction (3M+4M+4M+4M)

6. Write about functions and applications of Geosynthetics. (15M)

7. a) Write about mile stone charts and bar charts?
b) Define an ‘event’ and an ‘activity’. Differentiate clearly between the two. (7M+8M)

8. What do you understand by frequency distribution? How do you determine i) most likely time,
 ii) variance and iii) standard deviation from the frequency distribution? (15M)
1. a) Describe the process of blasting.
 b) What are the precautions to be taken in the process of blasting? (10M+5M)

2. a) Write about Rubble & Ashlar masonry with neat sketches.
 b) Write about fiber reinforced plastics. (8M +7M)

3. a) Explain the classification of limes.
 b) Explain the soundness test. (8M+7M)

4. a) Write about different trussed roofs.
 b) Write the soundness test. (8M+7M)

5. a) What is alkali-aggregate reaction? What are the factors which affect this reaction and how can this reaction be controlled? (8M+7M)
 b) What are the differences between prisms, vesicles and disintegrated? (8M+7M)

6. a) Describe the various phases of project management.
 b) Write about geogrids and geocells. (15M)

7. a) Write about the process of blasting.
 b) Describe the various phases of project management. (15M)

8. What is mean by probability distribution curve? Differentiate clearly between normal probability distribution curve and beta distribution. (15M)
1. a) Compare clamp-burning with kiln-burning.
 b) What are the tests to which a stone should be subjected before it is selected for building purposes? (8M+7M)

2. a) Write about different types of masonry.
 b) Explain what is meant by felling of trees. (8M+7M)

3. Write in detail about different types of cement. (15M)

4. a) Write about different types of Floors.
 b) What is distempering? How is it done? (8M+7M)

5. Write about Resource leveling and Resource allocation.

6. Discuss the characteristics of good aggregates.

7. Explain in brief the difference between PERT and CPM networks. Explain the circumstances under which one is preferred over the other.

8. Discuss the difference between most likely time estimate (l), mean time (m) and expected time (e). (15M)
II B. Tech I Semester Regular Examinations, March – 2014
CONSTRUCTION MATERIALS AND MANAGEMENT (Civil Engineering)

Time: 3 hours
Max. Marks: 75

Answer any FIVE Questions
All Questions carry Equal Marks

1. (a) Describe the various types of tiles.
 (b) Explain how the following tests for stones are carried out:
 i) Hardness test
 ii) Water absorption test

2. (a) Explain English bond with neat sketches.
 (b) Mention the qualities of a good timber.

3. Discuss at length the modern manufacturing process of ordinary cement.

4. (a) Write about different types of stair cases.
 (b) What are the different types of paints used for protecting steel structures in coastal regions?

5. (a) What are different types of aggregates for making mortar and concrete?
 (b) What is fineness? How would you find the fineness modulus value of coarse and fine aggregates?

6. Write about geocomposites and geomembranes.

7. A project consists of 8 activities A, B, C, D, E, F, G, H with their times of completion as follows:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Duration (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
</tr>
<tr>
<td>E</td>
<td>6</td>
</tr>
<tr>
<td>F</td>
<td>4</td>
</tr>
<tr>
<td>G</td>
<td>5</td>
</tr>
<tr>
<td>H</td>
<td>4</td>
</tr>
</tbody>
</table>

 The precedence relationships are as follows:
 A and B can be performed in parallel.
 C and D cannot start until A is complete.
 E cannot start until half the work of activity C is complete.
 F can start only after activity D is complete.
 G succeeds C.
 H is the last activity, which should succeed E.

 What is the earliest and latest time of all activities?
 What is the total time of completion of the project?

8. Differentiate between PERT network and CPM network.
 Illustrate your answer by drawing the two types of networks for a project.
II B. Tech I Semester Regular Examinations, March – 2014
ELECTRICAL AND ELECTRONICS ENGINEERING
(Com. to CE, ME, CHEM, PE, AME, MM)

Time: 3 hours Max. Marks: 75

All Questions carry Equal Marks

Note: Answer any FIVE Questions, not exceeding Three Question from any one part

PART-A

1. a) State and explain Kirchhoff’s laws with suitable examples.
 b) Three resistances of 5 ohms, 10 ohms and 15 ohms are connected in parallel. If the current in
 10 ohms resistance is 3 A, What is the current in other resistors and total current? Also
determine the voltage applied to the circuit. (7M+8M)

2. a) Explain the basic principle of operation of a DC generator. What are the various types of
generators? How they are classified? Draw their circuit diagrams.
 b) A 6-pole, lap wound armature has 840 conductors and a flux per pole of 0.018 Wb. Calculate
 the emf generated when the machine is running at 600 rpm. (8M+7M)

3. a) What are the various losses in a transformer? Derive a condition for maximum efficiency of
 the transformer.
 b) A 11000/400 V distribution transformer takes a no load primary current of 1 A at a power
 factor of 0.24 lagging. Find: i) Core loss current ii) magnetizing current iii) Iron loss
 (7M+8M)

4. a) Describe the principle of operation of a 3-phase induction motor. Derive the relation
 between stator supply frequency and rotor induced E.M.F. frequency.
 b) How voltage regulation by synchronous impedance method is calculated? (10M+5M)

PART-B

5. a) Draw and explain the V-I characteristics of a PN junction diode?
 b) Draw the circuit diagram of full wave rectifier and explain its working principle and derive
 the rms value of the output voltage? (7M+8M)

6. a) Explain how a transistor acts as an amplifier?
 b) Draw and explain V-I characteristics of the SCR? (7M+8M)

7. a) What is induction heating? Explain how it works?
 b) Discuss ultrasonic generation and its application (7M+8M)

8. a) Explain the principle of thermo couple?
 b) Explain the principle of strain gauge? (7M+8M)
II B. Tech I Semester Regular Examinations, March – 2014
ELECTRICAL AND ELECTRONICS ENGINEERING
(Com. to CE, ME, CHEM, PE, AME, MM)
Time: 3 hours Max. Marks: 75
All Questions carry Equal Marks
Note: Answer any FIVE Questions, not exceeding Three Question from any one part

PART-A

1. a) A coil takes 4 A when connected to 24 V dc supply. If this coil is connected to 40 V, 50 Hz ac supply then same amount of power is consumed. Calculate inductance of the coil and phase angle between voltage and current.
 b) Derive the relationship between the star-delta transformations of a network.
 (7M+8M)

2. a) Derive the expression for the torque developed by a DC motor.
 b) A 200 V shunt motor develops 23 hp when taking 20.2 kW. The field resistance is 50 ohms and armature resistance 0.06 ohm. What is the efficiency and power input when the output is 10 hp? (7M+8M)

3. a) The no load current of a transformer is 10 A at a power factor of 0.25 lagging, when connected to 400 V, 50 Hz supply. Calculate (b) magnetizing component of no-load current, iron loss and maximum value of the flux in the core. Assume primary winding turns as 500.
 b) Derive the emf equation of the Single Phase Transformer. (8M+7M)

4. a) Discuss the principle of operation of an induction motor and draw the torque-speed characteristics of a 3-ph induction motor.
 b) Discuss the principle of operation of an induction motor and draw the torque-speed characteristics of a 3-ph induction transformer. (8M+7M)

5. Draw the circuit for half wave rectifier and explain its operation. Derive the equation for rms value of the output voltage and average value of the output voltage. (15M)

6. a) Draw the circuit and explain the operation of a single stage CE amplifier.
 b) Explain the necessary conditions for oscillations. (7M+8M)

7. a) What is Induction heating? Explain its application to industries.
 b) What is the principle of dielectric heating and its applications. (8M+7M)

8. Write a short note on the following:
 a) Thermocouples
 b) P & Q meters
 c) CR crystal oscillator
 d) Digital multi meters
 e) CRO
 (5M+5M+5M+5M)

PART-B

5. Draw the circuit for half wave rectifier and explain its operation. Derive the equation for rms value of the output voltage and average value of the output voltage. (15M)

6. a) Draw the circuit and explain the operation of a single stage CE amplifier.
 b) Explain the necessary conditions for oscillations. (7M+8M)

7. a) What is Induction heating? Explain its application to industries.
 b) What is the principle of dielectric heating and its applications. (8M+7M)

8. Write a short note on the following:
 a) Thermocouples
 b) P & Q meters
 c) CR crystal oscillator
 d) Digital multi meters
 e) CRO
 (5M+5M+5M+5M)
II B. Tech I Semester Regular Examinations, March – 2014
ELECTRICAL AND ELECTRONICS ENGINEERING
(Com. to CE, ME, CHEM, PE, AME, MM)

Time: 3 hours Max. Marks: 75

All Questions carry equal Marks. Note: Answer any FIVE Questions, not exceeding Three Question from any one part

PART-A
1. (a) State and explain Kirchhoff's laws with relevant circuit diagram.
(b) Three resistances 2 ohms, 4 ohms and 6 ohms are connected in series across 24V supply. Find the voltages across three resistors and current through each resistor. (7M+8M)

2. (a) Draw a neat sketch of 3- point starter used for a DC motor and explain the protective devices provided in it.
(b) A 100 kW, 500 V, 750 rpm, D.C shunt generator, connected to constant voltage bus bars, has field and armature resistances of 100 \(/\Omega\)\text{525} and 0.1 \(/\Omega\)\text{525} respectively, and delivers full load. If the prime mover fails, and the machine continues to run taking 50 A from the bus-bars, calculate its speed. Neglect brush drop and armature reaction effect. (7M+8M)

3. (a) The primary and secondary windings of a 1- phase 500 kVA transformer have resistances of 0.1 ohm and 0.0012 ohm respectively. The primary and secondary voltages are 11000 V and 415 V respectively. The core loss is 2.9 kW. Assuming the power factor of the load to be 0.8 lagging, calculate the efficiency of the transformer. (10M+5M)

4. Explain how the regulation determined by conducting Synchronous Impedance Method in the laboratory on a synchronous machine.

5. (a) Compare half wave and full wave rectifiers.
(b) What is the dynamic characteristic of a diode? How do you obtain it from the static characteristic of a diode? (7M+8M)

6. (a) Compare the working of PNP and NPN transistors.
(b) What is the gain-current characteristic of a PNP transistor? How do you obtain it from the static characteristic? (7M+8M)

PART-B
7. (a) The primary and secondary windings of a 1- phase 500 kVA transformer have resistances of 0.1 ohm and 0.0012 ohm respectively. The primary and secondary voltages are 11000 V and 415 V respectively and the core loss is 2.9 kW. Assuming the power factor of the load to be 0.8 lagging, calculate the efficiency of the transformer. (10M+5M)

8. (a) Explain the various losses in a transformer. Define the efficiency of a transformer.
(b) Explain the various losses in a transformer. Calculate the efficiency of a transformer, assuming the power factor of the load to be 0.8 lagging. (7M+8M)

9. Explain the various losses in a transformer. Calculate the efficiency of a transformer, assuming the power factor of the load to be 0.8 lagging. (7M+8M)

10. (a) Describe the features of dielectric heating and Induction heating.
(b) What is a transducer and write its applications. (15M)

11. (a) Explain how the regulation determined by conducting Synchronous Impedance Method in the laboratory on a synchronous machine.
(b) What is the dynamic characteristic of a diode? How do you obtain it from the static characteristic? (7M+8M)

12. (a) Compare the working of PNP and NPN transistors?
(b) Give the physical arrangement of a PNP transistor and discuss how it provides current amplification. (7M+8M)

13. (a) Describe the features of dielectric heating and Induction heating. (15M)
(b) What is a transducer and write its applications. (10M+5M)

14. (a) Draw the schematic diagram of CRO and about each part in detail.
(b) What is a transducer and write its applications. (10M+5M)

Note: Answer any FIVE Questions, not exceeding Three Question from any one part

Max. Marks: 75
II B. Tech I Semester Regular Examinations, March – 2014
ELECTRICAL AND ELECTRONICS ENGINEERING
(Com. to CE, ME, CHEM, PE, AME, MM)

Time: 3 hours Max. Marks: 75

All Questions carry Equal Marks

Note: Answer any FIVE Questions, not exceeding Three Question from any one part

PART-A

1. a) A parallel combination of 4 ohm resistor and 8 ohm resistor is connected in series with a 4 ohm resistor. The circuit is connected across 24 Volts dc supply. Find the current through each resistor and voltage drop across each one.

b) Explain how to determine the reactance of an inductive circuit. (7M)

2. a) A 4-pole shunt generator with wave connected armature having shunt field and armature resistance of 50 and 0.1 ohm respectively, supplies 2.4 kW at 100 V. Calculate the total armature current, the current per armature path and the generated emf. Assume brush drop 1 volt per brush. (8M)

b) Derive the emf equation of a DC generator. (7M)

3. a) Explain the operation of a transformer and sketch phasor diagram on no load.

b) A 6600/220 V single phase, 50 Hz core type transformer has an effective cross section of 0.05 m2 and maximum flux density is 12000 Gauss. Calculate the number of turns on the HV and LV sides. (8M)

4. a) Describe the principle of operation of Induction motor and discuss some of its applications. (8M)

b) Obtain the expression for emf equation in alternators. (7M)

PART-B

5. a) Discuss the working principle and applications of PN Junction Diode.

b) Derive the equation for rms and average value of the output voltage waveform of a bridge rectifier. (7M)

6. a) With the help of necessary graphs and sketches explain about SCR characteristics and its applications. (8M)

b) Discuss the working principle and applications of Feedback amplifier. (7M)

7. a) Discuss dielectric heating and explain its applications clearly?

b) List out applications of ultrasonics. (10M)

8. a) Discuss the working of CRO and explain its applications.

b) Discuss the working of LVDT. (8M)
1. a) Prove that \(\int x J_n(x) J_n(x) \, dx = 0, \, m_1 \neq m_2. \)

b) Using the generating functions of Legendre polynomials, prove that
\[
(2n+1)x P_n(x) = (n+1) P_{n+1}(x) + n P_{n-1}(x).
\] (8M+7M)

2. a) State the necessary conditions for analyticity of a function \(f(z) \).

Show that the function \(f(z) = u + iv \), where
\[
f(z) = \frac{x^3(1+i) - y^3(1-i)}{x^2 + y^2}, \, z \neq 0;
\]
\[
= 0, \quad z = 0
\]
satisfy the Cauchy-Riemann conditions at \(z = 0 \). Is the function analytic at \(z = 0 \)? Justify your answer.

b) If \(u(x,y) = (x-1)^3 + xy^3 + 3y^2 \), determine \(v(x,y) \) so that \(u + iv \) is a regular function of \(x + iy \). (8M+7M)

3. a) Find all the roots of \(\tan z = 2 \).

b) If \(\cosh (u + iv) = x + iy \), prove that
\[
\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1 \quad \text{and} \quad \frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1.
\] (8M+7M)

4. a) Evaluate \(\int_0^3 z^2 \, dz \) along i) the line \(y = x/3 \) ii) along the curve \(x = 3y^2 \), does the integration depend upon the path?

b) Evaluate the integral \(\int_C \frac{\sin^2 z}{(z - \pi/6)^3} \, dz \), where \(C \) is the circle \(|z| = 1 \). (8M+7M)
5. a) Expand $(z + 1)^{-1}$ in the region $1 < |z|$. Also name the series so obtained.

b) Find the nature and location of the singularities of the function $(z^2 + 1)^{-1}$ by finding its Laurent's series expansion.

(8M+7M)

6. a) State Residue theorem. Evaluate the residues at the poles of the function $(z^2 + 1)^{-1}$. Hence evaluate the integral $\int_{C} \frac{1}{z^2 + 1} \, dz$ using suitable contour.

b) State Argument theorem. Evaluate the residues at the poles of the function $(z^2 + 1)^{-1}$.

(15M)

7. a) Define and prove Rouche's Theorem.

b) Use Rouche's theorem to show that the equation $(z^2 + 1)^{-1} = 1 + z + z^2$ has one root in the disc $|z| > \frac{1}{2}$ and four roots in the annulus $0 < |z| < 1 + \frac{1}{2}$. Evaluate the integrals $\int_{C} (z^2 + 1)^{-1} \, dz$ using suitable contour.

(8M+7M)

8. a) Find the mapping of x-axis under the transformation $z + i = \frac{z^2 + 1}{z - 1}$ respectively.

b) Define bilinear transformation. Find the bilinear transformation that maps the points $z = 0, z = 1, z = \infty$ into the points $w = 0, w = 1, w = \infty$ respectively.

(8M+7M)
1. \(a) \) Show that
\[
(2^n + 1) x J x J \ dx
\]
\(b) \) Prove that
\[
\int \frac{(1 - \mathcal{E})}{(\mathcal{E}^n + 1)} \ dx
\]

2. \(a) \) Define analyticity of a function. Show that the function defined by
\[
f(x, y, z) = \frac{1}{z}
\]
is not analytic at the origin although the C-R equations are satisfied at that point.
\(b) \) Prove that
\[
\frac{\partial}{\partial y} \left(\frac{2^n}{z^2} \right) = \frac{\partial}{\partial x} \left(\frac{2^n}{z^2} \right)
\]

3. \(a) \) Find the modulus and principal value of the argument of
\[
i + 3i
\]
\(b) \) Prove that the modulus and principal value of the argument of
\[
\frac{e^{z} + e^{-z}}{z}
\]
is not harmonic.

4. \(a) \) State and prove Cauchy's integral formula. Use it to evaluate the integral
\[
\frac{1}{2\pi i} \int_{C} \frac{e^{z}}{z - a} \ dz
\]

5. \(a) \) Separate the real and imaginary parts of the function
\[
\left(\frac{1}{z^2} + \frac{1}{z} \right)
\]
\(b) \) Prove that
\[
\frac{1}{z^2} + \frac{1}{z} = \frac{1}{z^2 - 2}
\]

6. \(a) \) Define analyticity of a function. Show that the function defined by
\[
f(x, y) = \frac{1}{x^2 + y^2}
\]
is not analytic.
\(b) \) Prove that
\[
\left(\frac{\partial}{\partial x} f \right) x = \left(\frac{\partial}{\partial y} f \right) y
\]

7. \(a) \) Find the modulus and principal value of the argument of
\[
\frac{1}{z^2} - \frac{1}{z}
\]
\(b) \) Prove that
\[
\int_{C} \frac{z^2}{z^2 - 1} \ dz
\]

All Questions carry Equal Marks
5. (a) Represent the function \(f(z) = \frac{z^2}{z^2 + 1} \) in Laurent series in the annular region between \(2 < |z| < 3 \).

(b) Find the singularities of the function \(f(z) \) indicating the character of each.

6. (a) State Residue Theorem. Prove by calculus of residues.

(b) Find the image of the semi-infinite strip \(x > 0, 0 < y < \lambda \) under the transformation \(w = iz + 1 \).

7. (a) If \(a > 1 \), then prove with the help of Rouche’s theorem that the equation \(\lambda z e^z = 1 \) has \(n \) roots inside the circle \(|z| = 1 \).

(b) If \(f(z) \) is analytic within and on a closed contour \(C \) except at a finite number of poles and is not zero on \(C \), then prove with the help of Rouche’s theorem that the equation \(\lambda z e^z = 1 \) has \(n \) roots inside the circle \(|z| = 1 \).

8. (a) Find the image of the semi-infinite strip \(x > 0, 0 < y < \lambda \) under the transformation \(z = \frac{i(z - 2)}{z^2 + 1} \).

(b) Define bilinear transformation. Find the bilinear transformation that maps the points \(0, 1, \infty \) to \(0, 1, \infty \), respectively.
II B. Tech I Semester Regular Examinations, March – 2014
MATHEMATICS - III
(Comm. to CE, CHEM, BT, PE)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions
All Questions carry Equal Marks

1. (a) Prove Rodriguez' formula

\[(z - 2)^n (1 + 2) f \]

(b) Hence derive Legendre polynomials of first three orders.

2. (a) Discuss the analyticity of the function

\[f(z) = \frac{z}{1 - z} \]

(b) If \(e^{x^2 + y^2} = \frac{z}{1 - z} \), then find \(f(z) \) in terms of \(z \).

3. (a) Separate the real and imaginary parts of

\[\tanh(iy) \]

(b) Find the general value of \(i^i \).

4. (a) Evaluate the integral \(\int_{C} \frac{z}{1 - z} dz \), where \(C \) is a circle

(b) State and prove Cauchy's theorem.

5. (a) Explain zeros and singularities of an analytic function. What type of singularities does the

(b) Find the Laurent series expansion of

\[\frac{1}{z^2 - 1} \]

in the region given by \(|z| < 1 \).

1 of 2

SET

PDFill PDF Editor with Free Writer and Tools
6. a) Find the residue at the singular points of the function
 \[f(z) = \frac{e^z}{z^2} \]

b) Using the residue theorem, evaluate the real integral:
 \[\int_{-\infty}^{\infty} \frac{x^7}{x^8 + 1} \cos x \, dx \]

7. a) If \(f(z) \) is analytic within and on a closed contour \(C \) except at a finite number of poles and is not zero on \(C \), then
 \[\oint_C f(z) \, dz = \frac{1}{2\pi i} \sum \text{Res}(f, a) \]

b) State Rouche's theorem. Using it prove that all the roots of
 \[z^3 - 3z^2 + 2z - 1 = 0 \]
 lie between the circles \(|z| = 1 \) and \(|z| = 2 \).

8. a) For the conformal transformation
 \[zw = 1 \]
 show that the circle \(|z| = 1 \) transforms into the cardioids
 \[\phi = \frac{1}{2} \left(1 - \frac{1}{2} \cos 2 \theta \right) \]
 where \(\phi \) is the angle in the \(w \) plane.

b) Find the bilinear transformation that maps the points
 \(z = \pm i \) into the points \(w = \pm 1 \) respectively. What are the critical points?
1. a) Using generating functions of Legendre's polynomials, prove that
\[xP_n(x) = \sum_{k=0}^{n} \binom{n}{k} x^k \sum_{m=0}^{k} \binom{k}{m} (-1)^m (2n-2m) P_m(x) \]

b) Prove that
\[J_n(x) = \frac{x^n}{2^n n!} \int_0^\pi e^{x \cos \theta} \cos (n \theta) d\theta \]

2. a) State the necessary conditions for analyticity of function \(f(z) \).
If
\[f(z) = \frac{1}{z-1} + \frac{2}{z-2} + \frac{3}{z-3} + \cdots \]

then show that \(f(z) \) is not analytic at origin although Cauchy-Riemann equations are satisfied there.

b) If \(f(z) = \frac{1}{2} \sin \theta + \frac{i}{2} \cos \theta \) be an analytic function and given that
\[z = \frac{r^2}{2} \Rightarrow r^2 = \frac{1}{2} \]

then find \(f(z) \) in terms of \(z \).

3. a) Prove that the real part of the principal value of
\[\log(1 + \frac{i}{2}) \]

is equal to
\[2 \log(\sqrt{2} + 1) \cos \frac{\pi}{4} \]

b) Find all the roots of
\[\sin z = 0 \]

4. a) i) State Cauchy integral theorem.
ii) Find the value of the integral
\[\int_C y \, dx + x \, dy \]

having \((0,0) \) and \((3,9) \) as end points.

b) Evaluate
\[\int_{C_1} \frac{1}{z} \, dz \]

over the circular path \(C_1 \).
5. a) Obtain the expression for \(f(z) = \frac{z^2 + z + 1}{z^2 - 2z + 1} \) which are valid in the region \(|z| > 1 \). Find the image of the points \(z = 1 + i, -1 + i \) under the bilinear transformation that maps \(z \frac{1}{1} \) to \(\frac{z}{z} \).

b) What do you mean by bilinear transformation? Find the bilinear transformation that maps \(z = 1 + i \) to \(w = 2 \).

6. a) Compute the residue of \(f(z) = \frac{z^2 + z + 1}{z^2 - 2z + 1} \) at \(z = 3 + i \).

b) Use contour integration to evaluate the real integral \(\int_{0}^{\infty} \frac{\sin^2 x}{x^2} \, dx \).

7. a) State and prove the fundamental theorem of algebra.

b) Prove that the polynomial \(f(z) = z^3 + 3z^2 + z + 1 \) has just one zero in the first quadrant of the complex plane. (8M+7M)

8. a) Find the image of \(2^2 = -iz \) under the mapping \(w = \frac{z}{1} \).

b) What do you mean by bilinear transformation? Find the bilinear transformation that maps \(z = 1, -1 \) to \(w = 0, 1 \) respectively. Hence find the image of \(z = 1 + i \) under the bilinear transformation that maps \(z \frac{1}{1} \) to \(\frac{z}{z} \).

(a) Obtain the expression for \(f(z) = \frac{z^2 + z + 1}{z^2 - 2z + 1} \) which are valid in the region \(|z| > 1 \). Find the image of the points \(z = 1 + i, -1 + i \) under the bilinear transformation that maps \(z \frac{1}{1} \) to \(\frac{z}{z} \).

(b) What do you mean by bilinear transformation? Find the bilinear transformation that maps \(z = 1 + i \) to \(w = 2 \).
1. a) Four forces of magnitude P, $2P$, $5.196P$ and $4P$ are acting at a point O. The angles made by these forces with x-axis are 0°, 60°, 150° and 300° respectively. Find the magnitude and direction of the resultant force.

b) Four forces of magnitude 10 kN, 20 kN, 30 kN and 40 kN are acting respectively along the four sides of a square $ABCD$ as shown in Figure 1. Determine: i) the resultant force, line of action and its direction. ii) Determine the resultant moment about point A. (7M+8M)

2. a) A ladder 5 m long and of 250 N weight is placed against a vertical wall in a position where its inclination to the vertical is 30°. A man weighing 800 N climbs the ladder. At what position will he induce slipping? The coefficient of friction for both the contact surfaces of the ladder viz. with the wall and the floor is 0.2.

b) Two locomotives on opposite banks of a canal pull a vessel moving parallel to the banks by means of two horizontal ropes. The tensions in the ropes are 2000 N and 2400 N while angle between them is 60°. Find the resultant pull on the vessel and the angle between each of the ropes and the sides of the canal. (8M+7M)

3. a) Show that the maximum power can be transmitted at $\tau_{\text{max}} = 3 \tau_c$.

b) A shaft rotating at 200 r.p.m drives another shaft at 300 r.p.m and transmits 6KW through a belt, the belt is 100mm wide and 10mm thick. The distance between the shafts is 4000mm the smaller pulley is 500mm in diameter. Calculate the stress in, (i) Open - belt and (ii) Crossed belt. Take $\mu = 0.3$. Neglect centrifugal tension. (7M+8M)

4. a) Find out the mass moment inertia of a right circular cone of base radius, R, and mass, M, about the axis of the cone.

b) Find the moment of inertia about the horizontal centriodal axis of shaded portion for the Figure 2. (8M+7M)
5. a) Explain the terms:
 i) Modulus of elasticity
 ii) Modulus of rigidity
 iii) Bulk modulus.

b) Show that in a compound bar of length \(L \), when temperature increases by \(t \) the shear force acting on this is 130 KN.

\[\tau = \frac{tL}{EA} \]

Where
- \(A \) - Cross-sectional areas of bar 1 and bar 2 respectively
- \(E \) - Young's moduli of bar 1 and bar 2 respectively
- \(\alpha_1 \) and \(\alpha_2 \) are coefficients of thermal expansion of bars 1 and 2 respectively.

6. Draw BM and SF diagrams for the beam shown in Figure 3, indicating the values at all salient points.

7. a) Compute the section modulus of rectangular section of dimensions \(b \times d \).

b) A simply supported beam of span 5.0 m has a cross-section 230 mm \(\times \) 350 mm. If the permissible stress in the material of the beam is 10 N/mm\(^2\), determine the maximum uniformly distributed load it can carry. Neglect moment due to self-weight.

8. A beam has cross-section as shown in Figure 4. If the shear force acting on this is 130 KN,

\[\tau = \frac{25 \text{ kN/m}}{7d} + \frac{40 \text{ kN/m}}{7d} + \frac{30 \text{ kN/m}}{7d} + \frac{20 \text{ kN/m}}{7d} \]

where \(d \) is depth of section.

\[\tau = \frac{150 \text{ kN}}{7d} \]

Developed stress is given by

\[\sigma = \frac{150 \text{ kN}}{7d} \]

b) Draw the shear stress distribution diagram across the depth.

\[\sigma = \frac{150 \text{ kN}}{7d} \]
1. Find the resultant of the concurrent force system shown in Figure 1 which consists of the forces \(T = 500 \text{ N} \), \(P = 250 \text{ N} \) and \(F = 800 \text{ N} \) directed from D towards A, B and C respectively. (15 M)

2. a) Explain the principles of operation of a screw jack with a neat sketch.

b) Outside diameter of a square threaded spindle of a screw jack is 40 mm. The screw pitch is 10 mm. The angular coefficient of friction between the screw and the nut is 0.15, neglecting friction between the nut and collar, determine:
 i) Force required to be applied at the screw to raise a load of 2000 N
 ii) The efficiency of screw jack
 iii) Force required to be applied at the screw to raise a load of 2000 N between the nut and collar, determine
 a) The value of the maximum efficiency.
 b) What should be the pitch of the screw for the maximum efficiency of the screw and when should be
 c) Efficiency while lowering the load
 d) The efficiency of screw jack
 e) Force required to be applied at the screw to raise a load of 2000 N between the nut and collar, determine
 (6 M+9 M)

3. A leather belt is required to transmit 9 kW from a pulley 1200 mm in diameter running at 200 r.p.m, the angle embraced is 1650 and the coefficient of friction between the belt and the pulley is 0.3. If the safe working stress for the leather belt is 1.4 N/mm², the weight of the belt is 1000 kg/m and the thickness of the belt is 10 mm, determine the width of the belt. (15 M)
4. Determine the volume generated by the shaded area as shown in Figure 2 about X-axis.

5. a) If the Poisson's ratio of a material is 0.3 and its young's modulus is 2.1 × 10^5 N/mm^2, what is the value of shear modulus?
 b) A steel rod of 20 mm diameter passes centrally through a thick copper tube of external diameter 40 mm. The tube is closed with the help of the rigid washers of negligible thickness.
 The tube is relaxed with the help of the rigid washers of negligible thickness. The temperature of the assembly falls by 50°C. Determine the stresses in the rod and the tube. Take E_s = 200 GN/mm^2, E_c = 100 GN/mm^2, /\gamma_{302} = 12 × 10^{-6} per 0°C, /\gamma_{302} = 18 × 10^{-6} per 0°C.

6. The simply supported beam AD is subjected to a uniform load over the segment BC together with a concentrated force applied at C as shown in Figure 3. Draw Shear force and bending moment diagram and indicate the values at salient points.

Figure 2

A
B
C
D
2.5 m
1 m
1 m
1 m
10 KN/m
12 KN
10 KN

Figure 3

X
Y

120 mm

PDFill PDF Editor with Free Writer and Tools
7. The cross-section of a cast iron beam is as shown in Figure 4. The top flange is in compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm² and its value in compression is 90 N/mm². What is the maximum uniformly distributed load the beam can carry over a simply supported span of 5 m?

8. A section has flanges of size 200 × 12 mm and its overall depth is 360 mm. The thickness of the web is also 12 mm. It is used as a simply supported beam over a span of 4 m to carry a load of 60 kN/m over its entire span. Draw the variation of bending and shear force across the beam. A load of 75 mm and 150 mm is applied as shown in Figure 4. What is the maximum uniformly distributed load the beam can carry over a simply supported span of 5 m?
1. a) Three identical cylinders, each of weighing W, are stacked as shown in Figure 1, on smooth inclined surfaces, each inclined at an angle θ with the horizontal. Determine the smallest angle θ to prevent the stack from collapsing.

b) The boom of a crane is shown in Figure 2, if the weight of the boom is negligible compared with the load $W = 60 \text{ kN}$, find the compression in the boom and also the limiting value of tension T when the boom approaches the vertical position. (7M+8M)

2. a) Find the least horizontal force P to start motion of any part of the system of three blocks resting upon one another as shown in Figure 3. The weights of the blocks are $A = 300 \text{ N}$, $B = 1000 \text{ N}$, $C = 2000 \text{ N}$. Between A and B, $\mu = 0.3$, between B and C, $\mu = 0.2$ and between C and the ground $\mu = 0.1$.

b) Define the following terms:
 i) Friction;
 ii) Angle of Friction;
 iii) Cone of Friction.

c) What are the characteristics of friction? (6M+6M+3M)
3. a) Distinguish between quarter turn and compound belt drives.
b) Determine the maximum power that can be transmitted using a belt of 100 mm × 10 mm with an angle of lap of 160°. The density of belt is 1000 kg/m³ and coefficient of friction may be taken as 0.25. The tension in the belt should not exceed 1.5 N/mm². The density of belt is 1000 kg/m³ and coefficient of friction may be taken as 0.25. The tension in the belt should not exceed 1.5 N/mm².

4. a) Find the expression for the strain energy for a thin plate of mass 'm' cut in the shape of a parallelogram of thickness 't' as shown in Figure 4.
b) Find the centroid for a semicircular arc about its diameter base.

c) Find the expression for the moment of inertia of a thin plate of mass 'm' cut in the shape of a parallelogram of thickness 't' as shown in Figure 4.

5. a) A bar of uniform thickness 't' tapers uniformly from a width 'b₁' at one end to 'b₂' at the other end in a length 'L' under an axial pull P. Find the expression for the moment of inertia of the bar of uniform thickness 't' cut in the shape of a parallelogram of thickness 't' as shown in Figure 4.
b) Tension test was conducted on a specimen and the following readings were recorded:
 - Diameter = 25 mm
 - Gauge length of extensometer = 200 mm
 - Least count of extensometer = 0.001 mm
 - At a load of 30 kN, extensometer reading = 60 mm
 - At a load of 50 kN, extensometer reading = 100 mm
 - Yield load = 160 kN
 - Maximum load = 205 kN
 - Diameter neck = 17 mm
 - Gauge length of extensometer = 200 mm
 - Diameter = 25 mm

6. The beam AC is simply supported at A and C and subjected to the uniformly distributed load of 300 N/m plus the couple of magnitude 2700 N-m as shown in Figure 5. Write the equations for shearing force and bending moment and make plots of these equations.
7. The cross-section of a cast iron beam is as shown in Figure 6. The top flange is in compression and bottom flange is in tension. Permissible stress in tension is 30 N/mm2 and its value in compression is 90 N/mm2. What is the maximum uniformly distributed load the beam can carry over a simply supported span of 5 m?

8. The unsymmetrical I-section shown in Figure 7 is the cross section of a beam, which is subjected to a shear force of 60 kN. Draw the shear stress variation diagram across the depth.
II B. Tech I Semester Regular Examinations, March – 2014

MECHANICS OF MATERIALS (Civil Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions. All Questions carry Equal Marks

1. a) A tripod consists of three bars joined at D as shown in Fig. 1. Find the component of force F along the direction T and the angle between F & T.

 b) Compute the horizontal component and its direction from X axis of resultant force of the force system T = 400 N, P = 200 N and F = 650 N directed from D towards A, B and C as shown in Figure 1. If the cylinder is perfectly vertical, find the force exerted by any one of the bars on the cylinder.

2. Two smooth ball bearings each of weight W and radius r are placed inside a cylindrical open-ended vessel as shown in Figure 2. If the cylinder is of weight W and radius R, find:
 a) the force exerted by either ball bearing on the cylinder,
 b) the smallest value of W that will prevent the cylinder from tipping over, and
 c) could the cylinder possibly tip if it were closed at the bottom ends.

(8M+7M)

(8M+7M)

(8M+7M)

(8M+7M)
3.
(a) Deduce an expression for centrifugal tension of belt drive.

(b) The maximum allowed tension in a belt is 1500 N. The angle of lap is 170° and the coefficient of friction between the belt and material of the pulley is 0.27. Neglecting the effect of centrifugal tension, calculate the net driving tension and power transmitted if the belt speed is 2 m/s.

4.
(a) Determine the product of inertia of shaded area as shown in Figure 3 about the x-y axis.

(b) Derive the relation between i_{11} and i_{22} for two-dimensional systems.

5.
(a) A tapering rod has diameter d_1 at one end and it tapers uniformly to a diameter d_2 at the other end in a length L. If the modulus of elasticity is E, find the change in length when subjected to an axial force P.

(b) Derive the relationship between E and G and E and K.

6.
Draw the bending moment and shear force diagrams for the beam loaded as shown in Figure 4.

Figure 3
- 80 mm x 40 kN
- 20 kN/m
- 10 kN/m
- 50 kN
- 40 kN

Figure 4
- 2 m
- 1 m
- 7 m
- 3 m
- R₁
- R₂
- 2 m
- 3 m
A symmetric I-section of size 200mm × 500mm, 15 mm thick is strengthened with 300mm × 20 mm rectangular plate on top flange as shown in Figure 5. If permissible stress in the material is 150 N/mm², determine how much concentrated load the beam of this section can carry at center of 6 m span. Given ends of beam are simply supported. (15M)

8. (a) Derive the expression for shear stress distribution of a rectangular section.
 (b) For a circular section of a diameter D, determine formula of shear stress at a distance "a" from neutral axis. (12M)

From neutral axis, a section of a beam where shearing force is F. Hence find the ratio of shear stress to neutral axis.
II B.Tech I Semester Regular Examinations, March 2014
SURVEYING
(Comm to CE, PE)

Time: 3 hours Max Marks: 75

Answer any FIVE Questions
All Questions carry equal marks

1. (a) a) Explain clearly the points of difference between the prismatic compass and Surveyor’s compass.

(b) What are the sources of errors in compass Surveying and what precautions are to be taken to eliminate them. [8+7]

2. (a) Explain the different methods of plotting a compass traverse.

(b) The following are the bearings of a closed traverse. Find out which of the stations are affected by local attraction. Tabulate the corrected bearings of lines. [8+7]

<table>
<thead>
<tr>
<th>Line</th>
<th>F.B</th>
<th>B.B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>N50°30'W</td>
<td>S30°E</td>
</tr>
<tr>
<td>BC</td>
<td>N54°00'E</td>
<td>S30°W</td>
</tr>
<tr>
<td>CD</td>
<td>S3°30'E</td>
<td>N4°00'W</td>
</tr>
<tr>
<td>DE</td>
<td>S41°30'E</td>
<td>N41°30'W</td>
</tr>
<tr>
<td>EA</td>
<td>S79°30'W</td>
<td>N78°00'E</td>
</tr>
</tbody>
</table>

3. (a) Describe the test for the adjustments of level tube giving neat sketches.

(b) Give the desired relation, object and necessity of the adjustment of level tube [9+6]

4. The following observations were made with a planimeter placing the anchor point outside the fig. in both cases with the same setting of tracing arm [15]

<table>
<thead>
<tr>
<th>Area</th>
<th>Initial reading</th>
<th>Final reading</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Known area of 600 sg cm</td>
<td>2.326</td>
<td>8.286</td>
<td>0</td>
</tr>
<tr>
<td>(b) Unknown area</td>
<td>8.286</td>
<td>5.220</td>
<td>+1</td>
</tr>
</tbody>
</table>

(a) Calculate the multiplier constant and

(b) the unknown area.

5. What are the different errors in Theodolite work? How are they eliminated? [15]

6. (a) What is tacheometry? What are different systems of tacheometric measurements?

(b) A tacheometer was set up at an intermediate point on a line AB and the following observations were made on a vertically held staff:
7. (a) How do you convert raster data into vector data?

(b) What is the difference between Raster Data & Vector Data in the context of GIS?

8. (a) How is the Geographical Information System different from traditional cartography?

(b) How are the elements of a simple circular curve? Give their relationships.

7. Determine the length AB and R.L. of B if the R.L. of A is 150.50 m.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.105</td>
<td>+5°30'</td>
</tr>
<tr>
<td>2.300</td>
<td>+9°45'</td>
</tr>
</tbody>
</table>

The instrument is fitted with an analytic lens and the multiplying constant is 100.

- Staff at Vertical angle (m) Central hair reading (m) Staff interval (m)
1. (a) List out the different accessories of plane table surveying. Also explain the purpose for which they are used.

(b) State three-point problem in plane table surveying and describe how it is solved by Bessel's method. [8+7]

2. (a) Define dip, magnetic declination, azimuth, isogonic lines.

(b) The following bearings are observed with a compass. Where do you suspect local attraction? Find the correct bearings.

<table>
<thead>
<tr>
<th>Line</th>
<th>F.B</th>
<th>B.B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>74° 00′ 25″</td>
<td>195° 00′ 00″</td>
</tr>
<tr>
<td>BC</td>
<td>91° 00′ 27″</td>
<td>194° 00′ 00″</td>
</tr>
<tr>
<td>CD</td>
<td>166° 00′ 34″</td>
<td>193° 00′ 00″</td>
</tr>
<tr>
<td>DE</td>
<td>177° 00′ 00″</td>
<td>192° 00′ 00″</td>
</tr>
<tr>
<td>EA</td>
<td>189° 00′ 09″</td>
<td>191° 00′ 00″</td>
</tr>
</tbody>
</table>

3. (a) Describe the two peg test for the adjustment of line of collimation.

(b) What is the desired relation and necessity of the above adjustment? [8+6]

5. A closed traverse was conducted round an obstacle and the following observations were made. Work out the missing quantities:

<table>
<thead>
<tr>
<th>Side</th>
<th>Length (m)</th>
<th>Azimuth</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>500</td>
<td>98° 30′ 30″</td>
</tr>
<tr>
<td>BC</td>
<td>620</td>
<td>30° 00′ 20″</td>
</tr>
<tr>
<td>CD</td>
<td>468</td>
<td>298° 30′ 30″</td>
</tr>
<tr>
<td>DE</td>
<td>?</td>
<td>230° 00′ 00″</td>
</tr>
<tr>
<td>EA</td>
<td>?</td>
<td>150° 00′ 10″</td>
</tr>
</tbody>
</table>

6. A tacheometer is set up on a bench mark of R.L. 60.00 m. The horizontal axis of the instrument is 1.240 m above the bench mark. The following observations were made with staff held vertically:

<table>
<thead>
<tr>
<th>Staff station</th>
<th>Vertical angle</th>
<th>Stadia hair reading</th>
<th>Central hair reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>+3° 030′ 00″</td>
<td>0.400</td>
<td>1.030</td>
</tr>
<tr>
<td>B</td>
<td>-8° 020′ 00″</td>
<td>0.900</td>
<td>1.270</td>
</tr>
<tr>
<td>C</td>
<td>+9° 050′ 00″</td>
<td>1.00</td>
<td>1.660</td>
</tr>
</tbody>
</table>

If the instrument constants k and c are 100 and 0.0 m, respectively, determine the R.L. of the staff stations. [15]
7. (a) What are the usual difficulties in ranging simple curves and how are they obviated.

(b) Calculate the ordinates from a 150m long chord at 10m interval to set out a simple circular curve of $8^\circ 7'$. Give an account of sources of GIS data.

8. (a) What are the components of a GIS and give a brief account of them?

(b) What are the spatial data models accounted in GIS and describe of each model?

(c) Give an account of sources of GIS data.
1. (a) Draw a neat sketch of a prismatic compass and explain it in detail.
(b) Explain bearing. What are different systems of designation of bearings? Explain. [8+7]

2. (a) Explain the procedure of chaining. How will you record the measurements of Chain Survey? Enumerate the points to be kept in view while booking the field notes.
(b) A survey line BAC crosses a river, A and C being on the near and opposite banks respectively. AD 40m long is set out at A. If the bearings of AD and DC are 38° 45' and 278° 45' respectively and the chainage at A is 862m, find the chainage at C. [8+7]

3. The following consecutive readings were taken on a continuously sloping ground at a common interval of 20m: 3.85, 1.03, 1.925, 2.825, 3.73, 4.685, 0.625, 2.005, 3.11, 4.485m. If the R.L of first point was 208.125. Calculate the R.L of the points by the rise and fall method. Also find the gradient of the line joining first and last points. [15]

4. The following observations were made with a planimeter placing the anchor point outside the fig. in both cases with the same setting of tracing arm.

<table>
<thead>
<tr>
<th>Area</th>
<th>Initial reading</th>
<th>Final reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown area</td>
<td>N</td>
<td>8.26</td>
</tr>
<tr>
<td>2.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Known area of 600 sq cm</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>2.36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Calculate the multiplier constant and
(b) the unknown area.

5. Discuss various methods of traversing by fast needle. What are the merits and demerits of different methods? [15]

6. Two observations are taken on a vertical staff by means of a Theodolite. For the first, the line of sight is directed to give a staff reading of 0.88m and an angle of elevation of 4° 08'. In the second case, the staff reading is 3.34m and the angle of elevation is 5° 30'. If the elevation of trunnion axis of the instrument is 195.60m, compute the R.L. of the staff station and its horizontal distance from the instrument. [15]

7. (a) Describe the method of setting out a simple circular curve by the method of deflection angles, using a chain and Theodolite. Draw a neat sketch of a prismatic compass and explain it in detail.

All Questions carry equal marks

Max Marks: 70

Answer any FIVE Questions

II B.Tech I Semester Regular Examinations, March 2014

Set No. 3

Code No: R14105/410
(b) Calculate the ordinates from the long chord at 7.5m interval to set out a simple circular curve of 100m. The length of long chord is 100m.

8. (a) How do you convert raster data into vector data? What is the difference between Raster Data & Vector Data in the context of Geographic Information System? How is it different from traditional cartography?

(b) How do you convert raster data into vector data?
1. (a) Give a detailed classification of Surveys.
(b) A line 3.2 km long is measured with a steel tape which is 20m under no pull at 30°C. The tape in section is 1/8 cm wide and 1/20 cm thick. If one half of the line is measured at a temperature of 40°C and the other half at 50°C and the tape is attached to a pull of 200N, find the corrected total length of the line given the coefficient of expansion is 11.5×10^{-6} per degree C, weight of tape per cubic cm of steel = 0.77504N, and $E = 2.1 \times 10^5 N/mm^2$.

2. (a) Explain compensating and cumulative errors in chain surveying.
(b) What are the Survey stations. How will you select them.
(c) A Survey line CD intersects a high building. To prolong the line beyond this obstacle, a perpendicular DE, 200m long is set out at D. From E, two lines EF and EG are set out at angles of 45° and 60° with ED respectively. Determine the length of EF and EG in order that the points F and G may lie on the prolongation of CD, and also find the obstructed length DF.

3. The following readings were taken with a dumpy level. If the R.L of station A = 560.500 m, find the H.I and the R.Ls of all other stations. Check your results.

<table>
<thead>
<tr>
<th>Section</th>
<th>B-S</th>
<th>I.S</th>
<th>F.S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.865</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1.025</td>
<td>2.105</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>1.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2.230</td>
<td>1.865</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>2.355</td>
<td>2.825</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>1.760</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. With the help of neat sketches explain briefly the theory of "planimeter" combining compensating and cumulative errors in chain surveying.

5. Differentiate between Bowditch's rule and the transit rule for the adjustment of a traverse. Explain both the methods of adjustment.

6. (a) What are the advantages of tacheometric surveying over other methods?
(b) Draw a diagram to CE, PE, SURVEYING
II B.Tech I Semester Regular Examinations March 2014

Set NO. 4

Max Marks: 75

Code NO: R12105/R10
7. (a) What are the elements of a simple circular curve. Give their relationships.
(b) Two roads meet an angle of 127°30′. Calculate the necessary data for setting out a curve of 15 chains radius to connect two straight portions of the road if it is intended to set out the curve by chain and offsets only. Take length of chain as 30m.
(c) What are the spatial data models accounted in GIS and describe each.
(d) Give an account of sources of GIS data.
(e) Give a brief account of them.

8. (a) What are the components of a GIS and give a brief account of them.

⋆ ⋆ ⋆ ⋆ ⋆

Code No: R21015/R10